scholarly journals Migratory insertion of isocyanide into a ketenyl–tungsten bond as key step in cyclization reactions

2022 ◽  
Author(s):  
Christopher Timmermann ◽  
Paula Thiem ◽  
Dominik Wanitschke ◽  
Mareike Hüttenschmidt ◽  
Johanna Romischke ◽  
...  

The prototype ketenyl ligand is bound end-on despite a formal 16 valence electron count at the metal. This situation opens a reaction pathway for a multicomponent cyclization centred on the migration of the ketenyl ligand.

Synthesis ◽  
2021 ◽  
Author(s):  
Xin Huang ◽  
Jianglian Li ◽  
Hua He ◽  
Kaichuan Yan ◽  
Ruizhi Lai ◽  
...  

A novel ruthenium-catalyzed alkylation of cyclopropanols with sulfoxonium ylides has been developed, which afford diverse 1,5-diketones with good efficiency and broad substrate scope. To illustrate the synthetic utilities of obtained 1,5-diketones, aldol and cyclization reactions have been investigated. The preliminary mechanistic studies suggest that this process involves a sequential C-C activation and carbene migratory insertion.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
A. Howie ◽  
D.W. McComb

The bulk loss function Im(-l/ε (ω)), a well established tool for the interpretation of valence loss spectra, is being progressively adapted to the wide variety of inhomogeneous samples of interest to the electron microscopist. Proportionality between n, the local valence electron density, and ε-1 (Sellmeyer's equation) has sometimes been assumed but may not be valid even in homogeneous samples. Figs. 1 and 2 show the experimentally measured bulk loss functions for three pure silicates of different specific gravity ρ - quartz (ρ = 2.66), coesite (ρ = 2.93) and a zeolite (ρ = 1.79). Clearly, despite the substantial differences in density, the shift of the prominent loss peak is very small and far less than that predicted by scaling e for quartz with Sellmeyer's equation or even the somewhat smaller shift given by the Clausius-Mossotti (CM) relation which assumes proportionality between n (or ρ in this case) and (ε - 1)/(ε + 2). Both theories overestimate the rise in the peak height for coesite and underestimate the increase at high energies.


Author(s):  
J. Liu ◽  
J. M. Cowley

The low energy loss region of a EELS spectrum carries information about the valence electron excitation processes (e.g., collective excitations for free electron like materials and interband transitions for insulators). The relative intensities and the positions of the interband transition energy loss peaks observed in EELS spectra are determined by the joint density of states (DOS) of the initial and final states of the excitation processes. Thus it is expected that EELS in reflection mode could yield information about the perturbation of the DOS of the conduction and valence bands of the bulk crystals caused by the termination of the three dimensional periodicity at the crystal surfaces. The experiments were performed in a Philipps 400T transmission electron microscope operated at 120 kV. The reflection EELS spectra were obtained by a Gatan 607 EELS spectrometer together with a Tracor data acquisition system and the resolution of the spectrometer was about 0.8 eV. All the reflection spectra are obtained from the specular reflection spots satisfying surface resonance conditions.


2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


2019 ◽  
Author(s):  
M. Alexander Ardagh ◽  
Manish Shetty ◽  
Anatoliy Kuznetsov ◽  
Qi Zhang ◽  
Phillip Christopher ◽  
...  

Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10<sup>-6</sup> < f < 10<sup>4</sup> Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.


2018 ◽  
Author(s):  
Yasemin Basdogan ◽  
John Keith

<div> <div> <div> <p>We report a static quantum chemistry modeling treatment to study how solvent molecules affect chemical reaction mechanisms without dynamics simulations. This modeling scheme uses a global optimization procedure to identify low energy intermediate states with different numbers of explicit solvent molecules and then the growing string method to locate sequential transition states along a reaction pathway. Testing this approach on the acid-catalyzed Morita-Baylis-Hillman (MBH) reaction in methanol, we found a reaction mechanism that is consistent with both recent experiments and computationally intensive dynamics simulations with explicit solvation. In doing so, we explain unphysical pitfalls that obfuscate computational modeling that uses microsolvated reaction intermediates. This new paramedic approach can promisingly capture essential physical chemistry of the complicated and multistep MBH reaction mechanism, and the energy profiles found with this model appear reasonably insensitive to the level of theory used for energy calculations. Thus, it should be a useful and computationally cost-effective approach for modeling solvent mediated reaction mechanisms when dynamics simulations are not possible. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document