Synthesis of mesoporous carbon spheres via soft-template route for catalyst support in PEMFC cathode

Soft Matter ◽  
2021 ◽  
Author(s):  
Hassan Javed ◽  
Shubhashree Pani ◽  
Jithin Antony ◽  
Mariappan Sakthivel ◽  
Jean-Francois Drillet

Synthesis of carbon spheres via soft-template route should be further improved for industrial applications especially in terms of time, cost and scalability. The present work reports on relative fast production...

Author(s):  
P. Toumsri ◽  
W. Auppahad ◽  
S. Saknaphawuth ◽  
B. Pongtawornsakun ◽  
S. Kaowphong ◽  
...  

Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO 3 H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H 2 SO 4 at 180°C gave mesoporous carbon bearing SO 3 H groups (SO 3 H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO 3 H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m 2  g −1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g −1 of SO 3 H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


2016 ◽  
Vol 852 ◽  
pp. 864-869 ◽  
Author(s):  
Zi Qiang Wang ◽  
Li Xian Sun ◽  
Fen Xu ◽  
Xiao Jun Peng

The nitrogen-doped mesoporous carbon spheres have been synthesized via soft-template and hydrothermal synthetic strategies using phenol/formaldehyde resins as carbon sources and melamine as a nitrogen source. The obtained carbon spheres exhibit a spherical morphology with a size range of 3-5 μm, which possess the narrow microporosity (ca. 1.2 nm) and mesoporosity (ca. 4 nm), large surface area (560-1200 m2 g-1) and high nitrogen contents (up to 15.7 wt%). Due to the well-developed porous structure and high nitrogen content, the carbon spheres show high performance for hydrogen storage, and the hydrogen adsorption capacities are in the range of 140-185 cm3 g-1, which is better than that of most activated carbons. The incorporation of nitrogen into carbons is favored for hydrogen uptake in low pressure.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiefeng Zheng ◽  
Yuanji Wu ◽  
Yong Tong ◽  
Xi Liu ◽  
Yingjuan Sun ◽  
...  

AbstractIn view of rich potassium resources and their working potential, potassium-ion batteries (PIBs) are deemed as next generation rechargeable batteries. Owing to carbon materials with the preponderance of durability and economic price, they are widely employed in PIBs anode materials. Currently, porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances. Herein, nitrogen-doped mesoporous carbon spheres (MCS) are synthesized by a facile hard template method. The MCS demonstrate larger interlayer spacing in a short range, high specific surface area, abundant mesoporous structures and active sites, enhancing K-ion migration and diffusion. Furthermore, we screen out the pyrolysis temperature of 900 °C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances. In detail, the optimized MCS-7-900 electrode achieves high rate capacity (107.9 mAh g−1 at 5000 mA g−1) and stably brings about 3600 cycles at 1000 mA g−1. According to electrochemical kinetic analysis, the capacitive-controlled effects play dominant roles in total storage mechanism. Additionally, the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS.


RSC Advances ◽  
2012 ◽  
Vol 2 (22) ◽  
pp. 8359 ◽  
Author(s):  
Lei Wang ◽  
Li Sun ◽  
Chungui Tian ◽  
Taixing Tan ◽  
Guang Mu ◽  
...  

2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


Author(s):  
Andaru Dena Prasiwi ◽  
Wega Trisunaryanti ◽  
Triyono Triyono ◽  
Iip Izul Falah ◽  
Darma Santi ◽  
...  

Synthesis of mesoporous carbon from Merbau wood (Intsia spp.) waste by microwave method as nickel catalyst support for α-cellulose hydrocracking had been carried out. The Merbau wood sawdust was carbonized at 800 °C to produce C800 and the C800 was treated by microwave irradiation (399 W) for 5 min to produce C800MW. The Merbau wood flakes, which were only treated by microwave irradiation (399 Watts) for 30 min produced CMW. Wet impregnation technique was carried out to disperse the Ni metal (1.0, 1.5, and 2.0 wt.%) onto the best mesoporous carbon. The mesoporous carbons were analyzed by Fourier Transform Infra-Red Spectroscopy (FTIR), Surface Area Analyzer (SAA) and Scanning Electron Microscopy (SEM). The hydrocracking of pyrolyzed α-cellulose was carried out at 400 °C. The liquid product was analyzed by Gas Chromatograph-Mass Spectrometer (GC-MS). The results showed that the C800MW was the best performance carbon and it had a specific surface area, total pore volume, average pore diameter and acidity of 364.12 m2/g, 0.28 cm3/g, 3.03 nm, and 2.18 mmol/g, respectively. The Ni1.5/C800MW catalyst produced the highest conversion of liquid product (58.76 wt.%) than the Ni1/C800MW (57.51 wt.%) and Ni2/C800MW (34.18 wt.%).


Sign in / Sign up

Export Citation Format

Share Document