scholarly journals Synthesis of Mesoporous Carbon from Merbau Wood (Intsia spp.) by Microwave Method as Ni Catalyst Support for α-Cellulose Hydrocracking

Author(s):  
Andaru Dena Prasiwi ◽  
Wega Trisunaryanti ◽  
Triyono Triyono ◽  
Iip Izul Falah ◽  
Darma Santi ◽  
...  

Synthesis of mesoporous carbon from Merbau wood (Intsia spp.) waste by microwave method as nickel catalyst support for α-cellulose hydrocracking had been carried out. The Merbau wood sawdust was carbonized at 800 °C to produce C800 and the C800 was treated by microwave irradiation (399 W) for 5 min to produce C800MW. The Merbau wood flakes, which were only treated by microwave irradiation (399 Watts) for 30 min produced CMW. Wet impregnation technique was carried out to disperse the Ni metal (1.0, 1.5, and 2.0 wt.%) onto the best mesoporous carbon. The mesoporous carbons were analyzed by Fourier Transform Infra-Red Spectroscopy (FTIR), Surface Area Analyzer (SAA) and Scanning Electron Microscopy (SEM). The hydrocracking of pyrolyzed α-cellulose was carried out at 400 °C. The liquid product was analyzed by Gas Chromatograph-Mass Spectrometer (GC-MS). The results showed that the C800MW was the best performance carbon and it had a specific surface area, total pore volume, average pore diameter and acidity of 364.12 m2/g, 0.28 cm3/g, 3.03 nm, and 2.18 mmol/g, respectively. The Ni1.5/C800MW catalyst produced the highest conversion of liquid product (58.76 wt.%) than the Ni1/C800MW (57.51 wt.%) and Ni2/C800MW (34.18 wt.%).

2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


2015 ◽  
Vol 15 (3) ◽  
pp. 242-247 ◽  
Author(s):  
Etty Marti Wigayati ◽  
Christin Rina Ratri ◽  
Ibrahim Purawiardi ◽  
Fadli Rohman ◽  
Titik Lestariningsih

Lithium bis (oxalate) borate or LiBOB is an active material used as the electrolyte for lithium battery application. LiBOB (LiB(C2O4)2) powder was prepared from LiOH, H2C2O4 and H3BO3. The employed method was solid state reaction. LiBOB powder produced from the reaction was then observed using SEM and TEM. Surface area was analyzed using Quantachrome Nova 4200e. From the analysis analyzed using XRD to identify the resulting phases, crystal structure, and crystallite size. The functional groups were analyzed using FT-IR. The particle morphology was result, it was seen that the resulted phases were C4LiBO8 and LiB(C2O4)2.H2O, the crystal structure was orthorhombic with space group Pbca and Pnma. From the particle morphology observation it was shown that micro pores were created irregularly. When the observation was deepened, nanopores with elongated round shape were seen within the micropores. The pore size was approximately 50–100 nm. The surface area, total pore volume, and average pore diameter of LiBOB powder was 88.556 m2/g, 0.4252 cm3/g, and 19.2 nm respectively.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-6
Author(s):  
Rahma Joni ◽  
Syukri Syukri ◽  
Hermansyah Aziz

Studi karakteristik karbon aktif dari cangkang buah ketaping (Terminalia Catappa) sebagai elektroda superkapasitor telah diteliti. Karbon aktif dari cangkang buah ketaping (CBK) disiapkan dengan proses karbonisasi pada suhu 400oC dan Proses aktivasi KOH pada suhu 800oC di bawah aliran gas N2. Karbon aktif CBK memiliki kandungan karbon dengan massa atomik sebesar 97,52%. Karbon aktif CBK memiliki struktur amorf dengan dua buah puncak yang lebar pada sudut 2θ yaitu 24,93o dan 42,93o yang bersesuaian dengan bidang (002) dan (100). Karbon aktif CBK yang dihasilkan memiliki pola serapan dengan jenis ikatan OH, C-H, C=O, dan C=C. Adanya ikatan OH dan C=O menunjukkan bahwa arang aktif yang dihasilkan cenderung bersifat lebih polar. Morfologi permukaan karbon aktif CBK menunjukan distribusi ukuran pori yang merata dan luas permukaan yang besar. Luas permukaan spesifik karbon aktif dari CBK adalah 799,892 m2×g-1 dengan volume total pori 0,080 cm3×g-1 dan jari-jari pori rata-rata 1,9072 nm. Kapasitansi spesifik dari karbon aktif dari CBK adalah sebesar 125,446 F×g-1. Studies on the characteristics of activated carbon from ketaping fruit shells (Terminalia Catappa) as supercapacitor electrodes have been studied. Activated carbon from ketaping fruit shells (KFS) prepared by carbonization process at 400oC and the KOH activation process is carried out at 800oC under N2 gas flow. Activated carbon KFS has a carbon content with 97.52% of atomic mass. Activated carbon KFS has an amorphous structure with two wide peaks at an angle of 2θ 24.93ᵒ and 42.93ᵒ corresponding to the plane (002) and (100). Activated carbon KFS produced has an absorption pattern with OH, C-H, C = O, and C = C bond types. The presence of OH and C = O bonds indicates that the activated charcoal produced tends to be more polar. The surface morphology of activated carbon KFS shows an even distribution of pore size and large surface area. The specific surface area of activated carbon KFS is 799.892 m2×g-1 with a total pore volume 0.080 cm3×g-1 and an average pore radius of 1.9072 nm. The specific capacitance value of activated carbon KFS is 125.444 F×g-1.Keywords: Ketaping, Activated Carbon, Supercapacitor, Activator, Capacitance. 


2010 ◽  
Vol 7 (2) ◽  
pp. 121-127
Author(s):  
Silvester Tursiloadi ◽  
Dinie Mansur ◽  
Yeny Meliana ◽  
Ruslan Efendi

Stable anatase is attractive because of its notable functions for photocatalysis and photon-electron transfer.  TiO2-nanoparticles dispersed SiO2 wet gels were prepared by hydrolysis of Ti(OC4H9n)4 and Si(OC2H5)4 in a 2-propanol solution with acid catalyst.  The solvent in the wet gels was supercritically extracted using CO2 at 60 oC and 22 Mpa in one-step.  Thermal evolution of the microstructure of the extracted gels (aerogels) was evaluated by XRD measurements, TEM and N2 adsorption measurements. The as-extracted aerogel with a large specific surface area, more than 365 m2g-1, contained anatase nanoparticles, about 5 nm in diameter.  The anatase phase was stable after calcinations at temperatures up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcinations at temperature up to 800 oC.   Keywords: Stable anatase, sol-gel, CO2 supercritical extraction.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


2009 ◽  
Vol 79-82 ◽  
pp. 1907-1910
Author(s):  
Zhi Gang Xie

Porous activated carbon was prepared from orange wastes using zinc chloride as an activating agent by one-step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on pore characteristics of activated carbon were studied. The porous structures of the orange wastes activated carbon were investigated by BET, D-R equations, BJH equations and Kelvin theory. The morphology was observed using transmission electron microscopy (TEM). The mesoporous activated carbon is gained when the impregnation ratio is 3:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has total pore volume 2.098 cm3/g, mesoporous pore volume 1.438 cm3/g, with a high BET surface area 1476m2/g. The pore distribution of the mesoporous activated carbon is very concentrative, with average pore diameter of 3.88nm. While, the high specific surface area activated carbon is gained when the impregnation ratio is 2:1; the carbonization temperature is 550°Cand heat preservation time is 1.0 h. The activated carbon has high BET surface area 1909 m2/g, while the total pore volume is only 1.448cm3/g and microporous pore volume is 0.889cm3/g, with average pore diameter of 2.29 nm.


2010 ◽  
Vol 4 (2) ◽  
pp. 110-116 ◽  
Author(s):  
Silvester Tursiloadi ◽  
Hiroshi Hirashima

Stable anatase is attractive to its notable functions for photo catalysis and photon-electron transfer.   Stable anatase TiO­2 containing amorphous SiO2 aerogel was prepared by hydrolysis of Ti (OC3H7)4 and Si (OC3H7)4 in a 2-propanol solution with acid catalyst. The solvent in wet gels was supercritically extracted in CO2 at 60 oC and 22 Mpa. Thermal evolutions of the microstructure of the gels were evaluated by TGA-DTA, N2 adsorption and XRD. A stable anatase TiO2 containing amorphous SiO2 aerogel with a BET specific surface area of 365 m2/g and a total pore volume of 0.20 cm3/g was obtained as prepared condition. The anatase phase was stable after calcination up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcination up to 900 oC.   Keywords: Supercritical extraction, sol-gel, aerogel, stable anatase structure


2020 ◽  
Vol 21 (1) ◽  
pp. 77
Author(s):  
Putri Nurul Amalia ◽  
Iman Abdullah ◽  
Dyah Utami Cahyaning Rahayu ◽  
Yuni Krisyuningsih Krisnandi

Carbon dioxide (CO2) is a compound that can potentially be used as a carbon source in the synthesis of fine chemicals. However, the utilization of CO2 is still constrained due to its inert and stable nature. Therefore, the presence of a catalyst is needed in CO2 conversion. This study aims to synthesize copper impregnated mesoporous carbon (Cu/MC) as a catalyst for phenylacetylene carboxylation reaction with CO2 to produce phenylpropiolic acid. The synthesis of mesoporous carbon was performed via the soft template method. The as-synthesized Cu/MC material was characterized by FTIR, SAA, XRD, and SEM-EDX. BET surface area analysis of mesoporous carbon showed that the material has a high surface area of 405.8 m2/g with an average pore diameter of 7.2 nm. XRD pattern of Cu/MC indicates that Cu has been successfully impregnated in the form of Cu(0) and Cu(I). Phenylacetylene carboxylation reaction with CO2 was carried out by varying reaction temperatures (25, 50, and 75 °C), amount of catalyst (28.6, 57.2, and 85.8 mg), type of base (Cs2CO3, K2CO3, and Na2CO3), and variation of support. The reaction mixtures were analyzed by HPLC and showed that the highest phenylacetylene conversion of 41% was obtained for the reaction at 75 °C using Cs2CO3 as a base.


2019 ◽  
Vol 12 (06) ◽  
pp. 1951004
Author(s):  
Tie Gao ◽  
Haibo Li

In this work, we proposed an effective strategy to prepare nitrogen-doped popcorn-like porous carbons (NPPCs) via ultra-fast carbonization of zeolitic immidazolate frameworks (ZIFs-8), where the ZIFs-8 acted as carbon precursor as well as the template. The obtained NPPCs possess popcorn-like morphology with large specific surface area of 1243[Formula: see text]m2/g, total pore volume of 1.48[Formula: see text]cm3/g and high nitrogen content. Remarkably, the average pore diameter of NPPCs was 4.72[Formula: see text]nm, indicating the presence of amount substantial mesopores. As the electrode of supercapacitor, the NPPCs revealed a relatively high specific capacitance of 610.4[Formula: see text]F/g in KOH (6[Formula: see text]mol/L) at 5[Formula: see text]mV/s. Even the scan rate was increased to 50[Formula: see text]mV/s, an impressive capacity of 424.8[Formula: see text]F/g can be achieved, suggesting good rate capability. Besides, it exhibited outstanding cycling stability with 93% of specific capacitance retention after 10,000 GCD cycles. Moreover, the NPPCs electrode demonstrated high electrochemical performance and stability by designing the coin-type and flexible supercapacitor. The large specific surface area, abundant accessible mesoporosity and novel nanostructure are account for the superior performance.


Sign in / Sign up

Export Citation Format

Share Document