Liquid metal biomaterials for biomedical imaging

Author(s):  
Wenwen Gao ◽  
Yige Wang ◽  
Qian Wang ◽  
Guolin Ma ◽  
Jing Liu

Liquid metals (LMs) not only retain the basic properties of metallic biomaterials, such as high thermal conductivity, high electrical conductivity, but also possess flexibility, flowability, deformability, plasticity, good adhesion, and...

Alloy Digest ◽  
1977 ◽  
Vol 26 (5) ◽  

Abstract Copper Alloy No. 815 is an age-hardenable cast copper-chromium alloy. It is characterized by high electrical and thermal conductivities combined with medium hardness and strength in the age-hardened condition. It is used for components requiring high electrical conductivity or high thermal conductivity. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-332. Producer or source: Copper alloy foundries.


1994 ◽  
Vol 147 ◽  
pp. 394-419
Author(s):  
Naoki Itoh

AbstractTransport processes in dense stellar plasmas which are relevant to the interiors of white dwarfs and neutron stars are reviewed. The emphasis is placed on the accuracy of the numerical results. In this review we report on the electrical conductivity and the thermal conductivity of dense matter. The methods of the calculations are different for the liquid metal phase and the crystalline lattice phase. We will broadly review the current status of the calculations of the transport properties of dense matter, and try to give the best instructions available at the present time to the readers.


2021 ◽  
pp. 2151005
Author(s):  
Yongpeng Wang ◽  
Wenying Wang ◽  
Haoyu Zhao ◽  
Lin Bo ◽  
Lei Wang ◽  
...  

In this study, the dense bulk Cu2Se thermoelectric (TE) materials were prepared by microwave melting and hot pressing sintering. The effects of different cooling processes on the microstructure and TE properties of Cu2Se were investigated. The results showed that the Cu2Se TE material prepared by microwave synthesis had high electrical conductivity, which was about 105 S⋅ m[Formula: see text]. The annealing process can lead to grain growth of Cu2Se and the formation of micropores in the Cu2Se, which deteriorated the thermal conductivity. The Cu2Se material prepared by the microwave melting and slow cooling process had the best TE performance, and the ZT value can reach 0.68 at 700 K.


2020 ◽  
Vol 6 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Zhongyang Wang ◽  
Kai Sun ◽  
Peitao Xie ◽  
Yao Liu ◽  
Qilin Gu ◽  
...  

2017 ◽  
Vol 114 (33) ◽  
pp. 8693-8697 ◽  
Author(s):  
Woochul Lee ◽  
Huashan Li ◽  
Andrew B. Wong ◽  
Dandan Zhang ◽  
Minliang Lai ◽  
...  

Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI3 (0.45 ± 0.05 W·m−1·K−1), CsPbBr3 (0.42 ± 0.04 W·m−1·K−1), and CsSnI3 (0.38 ± 0.04 W·m−1·K−1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI3 possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm−1), and high hole mobility (394 cm2·V−1·s−1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.


2017 ◽  
Vol 114 (9) ◽  
pp. 2143-2148 ◽  
Author(s):  
Michael D. Bartlett ◽  
Navid Kazem ◽  
Matthew J. Powell-Palm ◽  
Xiaonan Huang ◽  
Wenhuan Sun ◽  
...  

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.


2000 ◽  
Vol 626 ◽  
Author(s):  
M. Fornari ◽  
D. J. Singh ◽  
I. I. Mazin ◽  
J. L. Feldman

ABSTRACTThe key challenges in discovering new high ZT thermoelectrics are understanding how the nearly contradictory requirements of high electrical conductivity, high thermopower and low thermal conductivity can be achieved in a single material and based on this identifying suitable compounds. First principles calculations provide a material specific microscopic window into the relevant properties and their origins. We illustrate the utility of the approach by presenting specific examples of compounds belonging to the class of skutterudites that are or are not good thermoelectrics along with the microscopic reasons. Based on our computational exploration we make a suggestion for achieving higher values of ZT at room temperature in bulk materials, namely n-type La(Ru,Rh)4Sb12 with high La-filling.


iScience ◽  
2021 ◽  
pp. 103183
Author(s):  
Sumin Moon ◽  
Hanul Kim ◽  
Kyoungmun Lee ◽  
Jinwon Park ◽  
Yunho Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document