Phospholipid monolayers at non-polar oil/water interfaces. Part 1.—Phase transitions in distearoly-lecithin films at the n-heptane aqueous sodium chloride interface

Author(s):  
Beatrice Y. Yue ◽  
Craig M. Jackson ◽  
John A. G. Taylor ◽  
James Mingins ◽  
Brian A. Pethica
1988 ◽  
Vol 66 (12) ◽  
pp. 3031-3037 ◽  
Author(s):  
Robert Aveyard ◽  
Bernard P. Binks ◽  
Thomas A. Lawless ◽  
Jeremy Mead

Oil/water interfacial tensions are reported for systems containing pure alkane, aqueous sodium chloride, and a pure anionic surfactant, either Aerosol OT or p-dihexylbenzene sodium sulphonate (DHBS). Evidence is produced to support the claim that monolayer adsorption at the oil/water interface can produce ultralow tensions (~ 1 µN m−1), and that the presence at the interface of a third, surfactant-rich phase is not necessary. The aggregation of DHBS and its distribution between oil and aqueous phases of various salinities have been investigated. It has been confirmed that the behaviour of DHBS in these respects is similar to that of Aerosol OT, as might be expected from its molecular structure. The sizes of microemulsion droplets in equilibrium with planar adsorbed monolayers have been determined, and related to the tensions of the plane oil/aqueous phase interfaces using simple existing theory.


2021 ◽  
Vol 155 (4) ◽  
pp. 044703
Author(s):  
Alessandra Serva ◽  
Laura Scalfi ◽  
Benjamin Rotenberg ◽  
Mathieu Salanne

CORROSION ◽  
1969 ◽  
Vol 25 (8) ◽  
pp. 342-344 ◽  
Author(s):  
A. TIRMAN ◽  
E. G. HANEY ◽  
PAUL FUGASSI

Abstract The resistance to stress corrosion cracking of AISI 4340 steel foil in 0.6M aqueous sodium chloride, acidified to pH 1.5 with hydrochloric acid, is greatly decreased by prior treatment of the specimens for short periods of time with aqueous and nonaqueous solutions of sulfur, organic and inorganic sulfides, sulfur dioxides, and the inorganic salts of sulfurousand sulfuric acids. It is suggested that this prior treatment produces sulfided areas which are inhibitors of the combination of atomic hydrogen into molecular hydrogen. The decreased resistance to stress corrosion cracking is thus attributed to hydrogen embrittlement. If the stress corrosion cracking test is made in 0.6M aqueous sodium chloride, adjusted to an initial pH of 8, the effect of a prior sulfiding treatment is small. The formation of such sulfided areas in practice result from the exposure of 4340 steels to industrial atmospheres which may contain hydrogen sulfide, sulfur dioxide, and elemental sulfur.


Sign in / Sign up

Export Citation Format

Share Document