scholarly journals Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity

1999 ◽  
Vol 339 (3) ◽  
pp. 517 ◽  
Author(s):  
Nicholas J. WILSON ◽  
Suzanne T. MOSS ◽  
Xavier F. CSAR ◽  
Alister C. WARD ◽  
John A. HAMILTON
1999 ◽  
Vol 339 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Nicholas J. WILSON ◽  
Suzanne T. MOSS ◽  
Xavier F. CSAR ◽  
Alister C. WARD ◽  
John A. HAMILTON

Colony-stimulating factor 1 (CSF-1) is required for the development of monocytes/macrophages from progenitor cells and for the survival and activation of mature macrophages. The receptor for CSF-1 is the product of the c-fms proto-oncogene, which, on binding ligand, can stimulate a mitogenic response in the appropriate cells. To investigate which genes are regulated in response to CSF-1-stimulation in murine bone-marrow-derived macrophages (BMM), we employed mRNA differential display reverse transcriptase-mediated PCR to identify cDNA species induced by CSF-1. Both Northern and Western blot analyses confirmed the increased expression of one of the cDNA species identified as coding for the catalytic subunit of protein phosphatase 2A (PP2A), an observation not previously reported during the response to a growth factor. To determine the significance of the increased expression of PP2A in response to CSF-1, the PP2A inhibitor okadaic acid (OA) was added to CSF-1-treated BMM and found to inhibit DNA synthesis in a dose-dependent manner. Further analysis with flow cytometry in the presence of OA led to the novel conclusion that PP2A activity is critical for CSF-1-driven BMM cell cycle progression in both early G1 and S phases. Surprisingly, in the light of previous studies with other cells, the PP2A-dependent proliferation could be dissociated from activation by extracellular signal-regulated protein kinase (ERK) in macrophages because OA did not affect either the basal or CSF-1-induced ERK activity in BMM. Two-dimensional SDS/PAGE analysis of lysates of 32P-labelled BMM, which had been treated with CSF-1 in the presence or absence of OA, identified candidate substrates for PP2A.


2014 ◽  
Vol 194 (1-2) ◽  
pp. 48-52 ◽  
Author(s):  
Karen G. Rothberg ◽  
Neal Jetton ◽  
James G. Hubbard ◽  
Daniel A. Powell ◽  
Vidya Pandarinath ◽  
...  

2000 ◽  
Vol 254 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Pamela A. Havre ◽  
Michael Rice ◽  
Ronald Ramos ◽  
Eric B. Kmiec

1998 ◽  
Vol 18 (12) ◽  
pp. 7556-7564 ◽  
Author(s):  
Karen P. Mullane ◽  
Mara Ratnofsky ◽  
Xavier Culleré ◽  
Brian Schaffhausen

ABSTRACT Polyomavirus causes a broad spectrum of tumors as the result of the action of its early proteins. This work compares signaling from middle T antigen (MT), the major transforming protein, to that from small T antigen (ST). The abilities of MT mutants to promote cell cycle progression in serum-starved NIH 3T3 cells were compared. Transformation-defective mutants lacking association with SHC or with phosphatidylinositol 3-kinase (PI3-K) retained the ability to induce DNA synthesis as measured by bromodeoxyuridine incorporation. Only when both interactions were lost in the Y250F/Y315F double mutant was MT inactive. ST promoted cell cycle progression in a manner dependent on its binding of protein phosphatase 2A (PP2A). Since the Y250F/Y315F MT mutant was wild type for PP2A binding yet unable to promote cell cycle progression, while ST was capable of promoting cell cycle progression, these experiments revealed a functional difference in MT and ST signaling via PP2A. Assays testing the abilities of MT and ST to induce the c-fos promoter and to activate c-jun kinase led to the same conclusion. ST, but not Y250F/Y315F MT, was able to activate the c-fos promoter through its interaction with PP2A. In contrast, MT, but not ST, was able to activate c-jun kinase by virtue of its interaction with PP2A.


2006 ◽  
Vol 70 (2) ◽  
pp. 440-449 ◽  
Author(s):  
Yu Jiang

SUMMARY Protein phosphatase 2A (PP2A) has long been implicated in cell cycle regulation in many different organisms. In the yeast Saccharomyces cerevisiae, PP2A controls cell cycle progression mainly through modulation of cyclin-dependent kinase (CDK) at the G2/M transition. However, CDK does not appear to be a direct target of PP2A. PP2A affects CDK activity through its roles in checkpoint controls. Inactivation of PP2A downregulates CDK by activating the morphogenesis checkpoint and, consequently, delays mitotic entry. Defects in PP2A also compromise the spindle checkpoint and predispose the cell to an error-prone mitotic exit. In addition, PP2A is involved in controlling the G1/S transition and cytokinesis. These findings suggest that PP2A functions in many stages of the cell cycle and its effect on cell cycle progression is pleiotropic.


2008 ◽  
Vol 180 (5) ◽  
pp. 931-945 ◽  
Author(s):  
Gayatri Pal ◽  
Maria T.Z. Paraz ◽  
Douglas R. Kellogg

The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression.


2019 ◽  
Vol 21 (1) ◽  
pp. 264 ◽  
Author(s):  
Yolanda Moyano-Rodriguez ◽  
Ethel Queralt

Protein phosphorylation is a common mechanism for the regulation of cell cycle progression. The opposing functions of cell cycle kinases and phosphatases are crucial for accurate chromosome segregation and exit from mitosis. Protein phosphatases 2A are heterotrimeric complexes that play essential roles in cell growth, proliferation, and regulation of the cell cycle. Here, we review the function of the protein phosphatase 2A family as the counteracting force for the mitotic kinases. We focus on recent findings in the regulation of mitotic exit and cytokinesis by PP2A phosphatases in S. cerevisiae and other fungal species.


1998 ◽  
Vol 18 (5) ◽  
pp. 2923-2931 ◽  
Author(s):  
Frederick R. Cross ◽  
Kristi Levine

ABSTRACT Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. TheseCDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.


Sign in / Sign up

Export Citation Format

Share Document