scholarly journals Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins

2000 ◽  
Vol 348 (2) ◽  
pp. 315 ◽  
Author(s):  
Michela FESTA ◽  
Alfredo COLONNA ◽  
Concetta PIETROPAOLO ◽  
Alfredo RUFFO
2000 ◽  
Vol 348 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Michela FESTA ◽  
Alfredo COLONNA ◽  
Concetta PIETROPAOLO ◽  
Alfredo RUFFO

We investigated the effect of oxalomalate (OMA, α-hydroxy-β-oxalosuccinic acid), a competitive inhibitor of aconitase, on the RNA-binding activity of the iron-regulatory proteins (IRP1 and IRP2) that control the post-transcriptional expression of various proteins involved in iron metabolism. The RNA-binding activity of IRP was evaluated by electrophoretic mobility-shift assay of cell lysates from 3T3-L1 mouse fibroblasts, SH-SY5Y human cells and mouse livers incubated in vitro with OMA, with and without 2-mercaptoethanol (2-ME). Analogous experiments were performed in vivo by prolonged incubation (72 h) of 3T3-L1 cells with OMA, and by injecting young mice with equimolar concentrations of oxaloacetate and glyoxylate, which are the precursors of OMA synthesis. OMA remarkably decreased the binding activity of IRP1 and, when present, of IRP2, in all samples analysed. In addition, the recovery of IRP1 by 2-ME in the presence of OMA was constantly lower versus control values. These findings suggest that the severe decrease in IRP1 RNA-binding activity depends on: (i) linking of OMA to the active site of aconitase, which prevents the switch to IRP1 and explains resistance to the reducing agents, and (ii) possible interaction of OMA with some functional amino acid residues in IRP that are responsible for binding to the specific mRNA sequences involved in the regulation of iron metabolism.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2161-2167 ◽  
Author(s):  
Guangjun Nie ◽  
Alex D. Sheftel ◽  
Sangwon F. Kim ◽  
Prem Ponka

AbstractCytosolic ferritin sequesters and stores iron and, consequently, protects cells against iron-mediated free radical damage. However, the function of the newly discovered mitochondrial ferritin (MtFt) is unknown. To examine the role of MtFt in cellular iron metabolism, we established a cell line that stably overexpresses mouse MtFt under the control of a tetracycline-responsive promoter. The overexpression of MtFt caused a dose-dependent iron deficiency in the cytosol that was revealed by increased RNA-binding activity of iron regulatory proteins (IRPs) along with an increase in transferrin receptor levels and decrease in cytosolic ferritin. Consequently, the induction of MtFt resulted in a dramatic increase in cellular iron uptake from transferrin, most of which was incorporated into MtFt. The induction of MtFt caused a shift of iron from cytosolic ferritin to MtFt. In addition, iron inserted into MtFt was less available for chelation than that in cytosolic ferritin and the expression of MtFt was associated with decreased mitochondrial and cytosolic aconitase activities, the latter being consistent with the increase in IRP-binding activity. In conclusion, our results indicate that overexpression of MtFt causes a dramatic change in intracellular iron homeostasis and that shunting iron to MtFt likely limits its availability for active iron proteins.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 781-792 ◽  
Author(s):  
G. Darnell ◽  
D.R. Richardson

We have identified specific iron (Fe) chelators of the pyridoxal isonicotinoyl hydrazone (PIH) class that are far more effective ligands than desferrioxamine (DFO; Richardson et al, Blood 86:4295, 1995; Richardson and Milnes, Blood 89:3025, 1997). In the present study, we have compared the effect of DFO and one of the most active chelators (2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone; 311) on molecular targets involved in proliferation. This was performed to further understand the mechanisms involved in the antitumor activity of Fe chelators. Ligand 311 was far more active than DFO at increasing Fe release from SK-N-MC neuroepithelioma and BE-2 neuroblastoma cells and preventing Fe uptake from transferrin. Like DFO, 311 increased the RNA-binding activity of the iron-regulatory proteins (IRPs). However, despite the far greater Fe chelation efficacy of 311 compared with DFO, a similar increase in IRP-RNA binding activity occurred after 2 to 4 hours of incubation with either chelator, and the binding activity was not inhibited by cycloheximide. These results suggest that, irrespective of the Fe chelation efficacy of a ligand, an increase IRP-RNA binding activity occurred via a time-dependent step that did not require protein synthesis. Further studies examined the effect of 311 and DFO on the expression of p53-transactivated genes that are crucial for cell cycle control and DNA repair, namely WAF1,GADD45, and mdm-2. Incubation of 3 different cell lines with DFO or 311 caused a pronounced concentration- and time-dependent increase in the expression of WAF1 and GADD45 mRNA, but not mdm-2 mRNA. In accordance with the distinct differences in Fe chelation efficacy and antiproliferative activity of DFO and 311, much higher concentrations of DFO (150 μmol/L) than 311 (2.5 to 5 μmol/L) were required to markedly increase GADD45 and WAF1 mRNA levels. The increase in GADD45 and WAF1 mRNA expression was seen only after 20 hours of incubation with the chelators and was reversible after removal of the ligands. In contrast to the chelators, the Fe(III) complexes of DFO and 311 had no effect on increasing GADD45 and WAF1 mRNA levels, suggesting that Fe chelation was required. Finally, the increase in GADD45 and WAF1 mRNAs appeared to occur by a p53-independent pathway in SK-N-MC and K562 cells, because these cell lines lack functional p53. Our results suggest that GADD45 and WAF1 may play important roles in the cell cycle arrest observed after exposure to these chelators.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3404-3411 ◽  
Author(s):  
Brian D. Schneider ◽  
Elizabeth A. Leibold

AbstractIron regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that affect the translation and stabilization of specific mRNAs by binding to stem-loop structures known as iron responsive elements (IREs). IREs are found in the 5′-untranslated region (UTR) of ferritin (Ft) and mitochondrial aconitase (m-Aco) mRNAs, and in the 3′-UTR of transferrin receptor (TfR) and divalent metal transporter-1 (DMT1) mRNAs. Our previous studies show that besides iron, IRPs are regulated by hypoxia. Here we describe the consequences of IRP regulation and show that iron homeostasis is regulated in 2 phases during hypoxia: an early phase where IRP1 RNA-binding activity decreases and iron uptake and Ft synthesis increase, and a late phase where IRP2 RNA-binding activity increases and iron uptake and Ft synthesis decrease. The increase in iron uptake is independent of DMT1 and TfR, suggesting an unknown transporter. Unlike Ft, m-Aco is not regulated during hypoxia. During the late phase of hypoxia, IRP2 RNA-binding activity increases, becoming the dominant regulator responsible for decreasing Ft synthesis. During reoxygenation (ReO2), Ft protein increases concomitant with a decrease in IRP2 RNA-binding activity. The data suggest that the differential regulation of IRPs during hypoxia may be important for cellular adaptation to low oxygen tension.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2662-2662
Author(s):  
Matthias Schranzhofer ◽  
Manfred Schifrer ◽  
Prem Ponka ◽  
Ernst W. Muellner

Abstract Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are cytoplasmic RNA-binding proteins that target specific stem-loop RNA structures known as iron responsive elements (IRE). Binding of IRPs to IREs inhibits translation of ferritin mRNA and stabilizes transferrin receptor (TfR) mRNA. Various factors have been reported to regulate binding activity of IRPs, such as iron, phosphorylation, nitric oxide and hypoxia. While there is a consistent agreement on the negative effect of iron on the interaction between IRPs and IREs, reports regarding the influence of hypoxia on the IRE-binding activity of IRPs vary in a species and cell specific manner. It was the aim of this work to study the effect of hypoxic (3% oxygen) and normoxic (20% oxygen) conditions on IRP binding activity in primary erythroid cells. The cells were induced for differentiation and incubated under physiological, low (Desferrioxamine) and high (ferric ammonium citrate) iron conditions. Binding activity of IRPs and protein levels of ferritin and TfR as well as cell proliferation and differentiation parameters were determined to analyze the regulation of iron metabolism during terminal differentiation. The data show, that in developing red blood cells binding activities of IRP1 and IRP2 are reduced at 3% oxygen. This reduction correlates with increased ferritin protein levels and decreased TfR protein levels. Moreover, incubation under hypoxia strongly decreased cell expansion and reduces hemoglobinization. These results suggest that terminal erythroid differentiation in the bone marrow might occur under normoxic rather than hypoxic conditions.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. e168-e179 ◽  
Author(s):  
Mayka Sanchez ◽  
Bruno Galy ◽  
Bjoern Schwanhaeusser ◽  
Jonathon Blake ◽  
Tomi Bähr-Ivacevic ◽  
...  

Abstract Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.


2007 ◽  
Vol 405 (3) ◽  
pp. 523-531 ◽  
Author(s):  
Nicolas Arnaud ◽  
Karl Ravet ◽  
Andrea Borlotti ◽  
Brigitte Touraine ◽  
Jossia Boucherez ◽  
...  

Animal cytosolic ACO (aconitase) and bacteria ACO are able to switch to RNA-binding proteins [IRPs (iron-regulatory proteins)], thereby playing a key role in the regulation of iron homoeostasis. In the model plant Arabidopsis thaliana, we have identified three IRP1 homologues, named ACO1–3. To determine whether or not they may encode functional IRP proteins and regulate iron homoeostasis in plants, we have isolated loss-of-function mutants in the three genes. The aco1-1 and aco3-1 mutants show a clear decrease in cytosolic ACO activity. However, none of the mutants is affected in respect of the accumulation of the ferritin transcript or protein in response to iron excess. cis-acting elements potentially able to bind to the IRP have been searched for in silico in the Arabidopsis genome. They appear to be very rare sequences, found in the 5′-UTR (5′-untranslated region) or 3′-UTR of a few genes unrelated to iron metabolism. They are therefore unlikely to play a functional role in the regulation of iron homoeostasis. Taken together, our results demonstrate that, in plants, the cytosolic ACO is not converted into an IRP and does not regulate iron homoeostasis. In contrast with animals, the RNA binding activity of plant ACO, if any, would be more likely to be attributable to a structural element, rather than to a canonical sequence.


Sign in / Sign up

Export Citation Format

Share Document