scholarly journals Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins

2000 ◽  
Vol 348 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Michela FESTA ◽  
Alfredo COLONNA ◽  
Concetta PIETROPAOLO ◽  
Alfredo RUFFO

We investigated the effect of oxalomalate (OMA, α-hydroxy-β-oxalosuccinic acid), a competitive inhibitor of aconitase, on the RNA-binding activity of the iron-regulatory proteins (IRP1 and IRP2) that control the post-transcriptional expression of various proteins involved in iron metabolism. The RNA-binding activity of IRP was evaluated by electrophoretic mobility-shift assay of cell lysates from 3T3-L1 mouse fibroblasts, SH-SY5Y human cells and mouse livers incubated in vitro with OMA, with and without 2-mercaptoethanol (2-ME). Analogous experiments were performed in vivo by prolonged incubation (72 h) of 3T3-L1 cells with OMA, and by injecting young mice with equimolar concentrations of oxaloacetate and glyoxylate, which are the precursors of OMA synthesis. OMA remarkably decreased the binding activity of IRP1 and, when present, of IRP2, in all samples analysed. In addition, the recovery of IRP1 by 2-ME in the presence of OMA was constantly lower versus control values. These findings suggest that the severe decrease in IRP1 RNA-binding activity depends on: (i) linking of OMA to the active site of aconitase, which prevents the switch to IRP1 and explains resistance to the reducing agents, and (ii) possible interaction of OMA with some functional amino acid residues in IRP that are responsible for binding to the specific mRNA sequences involved in the regulation of iron metabolism.

2001 ◽  
Vol 21 (20) ◽  
pp. 7010-7019 ◽  
Author(s):  
Flaviano Giorgini ◽  
Holly G. Davies ◽  
Robert E. Braun

ABSTRACT Y-box proteins are major constituents of ribonucleoprotein particles (RNPs) which contain translationally silent mRNAs in gametic cells. We have recently shown that a sequence-specific RNA binding activity present in spermatogenic cells contains the two Y-box proteins MSY2 and MSY4. We show here that MSY2 and MSY4 bind a sequence, 5′-UCCAUCA-3′, present in the 3′ untranslated region of the translationally repressed protamine 1 (Prm1) mRNA. Using pre- and post-RNase T1-digested substrate RNAs, it was determined that MSY2 and MSY4 can bind an RNA of eight nucleotides containing the MSY2 and MSY4 binding site. Single nucleotide mutations in the sequence eliminated the binding of MSY2 and MSY4 in an electrophoretic mobility shift assay, and the resulting mutants failed to compete for binding in a competition assay. A consensus site of UACCACAUCCACU(subscripts indicate nucleotides which do not disrupt YRS binding by MSY2 and MSY4), denoted the Y-box recognition site (YRS), was defined from this mutational analysis. These mutations in the YRS were further characterized in vivo using a novel application of the yeast three-hybrid system. Experiments with transgenic mice show that disruption of the YRS in vivo relieves Prm1-like repression of a reporter gene. The conservation of the RNA binding motifs among Y-box protein family members raises the possibility that other Y-box proteins may have previously unrecognized sequence-specific RNA binding activities.


2000 ◽  
Vol 348 (2) ◽  
pp. 315 ◽  
Author(s):  
Michela FESTA ◽  
Alfredo COLONNA ◽  
Concetta PIETROPAOLO ◽  
Alfredo RUFFO

Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


2000 ◽  
Vol 20 (6) ◽  
pp. 2209-2217 ◽  
Author(s):  
Jacqueline M. T. Klein Gunnewiek ◽  
Reem I. Hussein ◽  
Yvonne van Aarssen ◽  
Daphne Palacios ◽  
Rob de Jong ◽  
...  

ABSTRACT It was previously shown that the human U1A protein, one of three U1 small nuclear ribonucleoprotein-specific proteins, autoregulates its own production by binding to and inhibiting the polyadenylation of its own pre-mRNA. The U1A autoregulatory complex requires two molecules of U1A protein to cooperatively bind a 50-nucleotide polyadenylation-inhibitory element (PIE) RNA located in the U1A 3′ untranslated region. Based on both biochemical and nuclear magnetic resonance structural data, it was predicted that protein-protein interactions between the N-terminal regions (amino acids [aa] 1 to 115) of the two U1A proteins would form the basis for cooperative binding to PIE RNA and for inhibition of polyadenylation. In this study, we not only experimentally confirmed these predictions but discovered some unexpected features of how the U1A autoregulatory complex functions. We found that the U1A protein homodimerizes in the yeast two-hybrid system even when its ability to bind RNA is incapacitated. U1A dimerization requires two separate regions, both located in the N-terminal 115 residues. Using both coselection and gel mobility shift assays, U1A dimerization was also observed in vitro and found to depend on the same two regions that were found in vivo. Mutation of the second homodimerization region (aa 103 to 115) also resulted in loss of inhibition of polyadenylation and loss of cooperative binding of two U1A protein molecules to PIE RNA. This same mutation had no effect on the binding of one U1A protein molecule to PIE RNA. A peptide containing two copies of aa 103 to 115 is a potent inhibitor of polyadenylation. Based on these data, a model of the U1A autoregulatory complex is presented.


2021 ◽  
Vol 22 (16) ◽  
pp. 9103
Author(s):  
Julita Gumna ◽  
Angelika Andrzejewska-Romanowska ◽  
David J. Garfinkel ◽  
Katarzyna Pachulska-Wieczorek

A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.


2021 ◽  
Author(s):  
Hucheng Liu ◽  
Jun Xiao ◽  
Bo Li ◽  
Yajun Chen ◽  
Jin Zeng ◽  
...  

Abstract Background In a previous study, we have identified that circ-CTNNB1 (a circular RNA derived from CTNNB1) drives cancer progression through the activation of the Wnt/β-catenin signaling pathway in various tumors. However, the functions of circ-CTNNB1 in regulating osteosarcoma (OS, a highly malignant bone tumor in children and adolescents) remain unclear. In this study, we aimed to assess the role of circ-CTNNB1 in OS and identify the underlying mechanisms, which may contribute to the exploration of a potential therapeutic strategy for OS. Methods Circ-CTNNB1 was analyzed by qRT-PCR, and the results were confirmed by Sanger sequencing. The interaction and effects between circ-CTNNB1 and RNA binding motif protein 15 (RBM15) were analyzed through biotin-labeled RNA pull-down and mass spectrometry, in vitro binding, and RNA electrophoretic mobility shift assays. In vitro and in vivo experiments were performed to evaluate the biological functions and underlying mechanisms of circ-CTNNB1 and RBM15 in OS cells. Results Circ-CTNNB1 was highly expressed in OS tissues and predominantly detected in the nucleus of OS cells. Ectopic expression of circ-CTNNB1 promoted the growth, invasion, and metastasis of OS cells in vitro and in vivo. Mechanistically, circ-CTNNB1 interacted with RBM15 and subsequently promoted the expression of hexokinase 2 (HK2), glucose-6-phosphate isomerase (GPI), and phosphoglycerate kinase 1 (PGK1) through N6-methyladenosine (m6A) modification to facilitate the glycolysis process and activate OS progression. Conclusions These results indicate that oncogenic circ-CTNNB1 drives aerobic glycolysis and OS progression by facilitating RBM15-mediated m6A modification.


1989 ◽  
Vol 9 (11) ◽  
pp. 4706-4712
Author(s):  
A H Siddiqui ◽  
M C Brandriss

The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.


2011 ◽  
Vol 89 (4) ◽  
pp. 423-433 ◽  
Author(s):  
Céline Bruelle ◽  
Mikaël Bédard ◽  
Stéphanie Blier ◽  
Martin Gauthier ◽  
Abdulmaged M. Traish ◽  
...  

The RNA-binding protein p54nrb is involved in many nuclear processes including transcription, RNA processing, and retention of hyperedited RNAs. In interphase cells, p54nrb localizes to the nucleoplasm and concentrates with protein partners in the paraspeckles via an interaction with the non-coding RNA Neat1. During mitosis, p54nrb becomes multiphosphorylated and the effects of this modification are not known. In the present study, we show that p54nrb phosphorylation does not affect the interactions with its protein partners but rather diminishes its general RNA-binding ability. Biochemical assays indicate that in vitro phosphorylation of a GST-p54nrb construct by CDK1 abolishes the interaction with 5′ splice site RNA sequence. Site-directed mutagenesis shows that the threonine 15 residue, located N-terminal to the RRM tandem domains of p54nrb, is involved in this inhibition. In vivo analysis reveals that Neat1 ncRNA co-immunoprecipitates with p54nrb in either interphase or mitotic cells, suggesting that p54nrb–Neat1 interaction is not modulated by phosphorylation. Accordingly, in vitro phosphorylated GST-p54nrb still interacts with PIR-1 RNA, a G-rich Neat1 sequence known to interact with p54nrb. In vitro RNA binding assays show that CDK1-phosphorylation of a GST-p54nrb construct abolishes its interaction with homoribopolymers poly(A), poly(C), and poly(U) but not with poly(G). These data suggest that p54nrb interaction with RNA could be selectively modulated by phosphorylation during mitosis.


1997 ◽  
Vol 69 (2) ◽  
pp. 101-110 ◽  
Author(s):  
ALAN TAYLOR ◽  
LIQUN ZHANG ◽  
JOHN HERRMANN ◽  
BEI WU ◽  
LARRY KEDES ◽  
...  

In vitro studies using highly purified calf thymus RNA polymerase II and a fragment spanning the first intron of H3.3 as template DNA have demonstrated the existence of a strong transcription termination site consisting of thymidine stretches. In this study, nuclear run-on experiments have been performed to assess the extent to which transcription elongation is blocked in vivo using DNA probes corresponding to regions 5′ and 3′ of the in vitro termination sites. These studies suggest that H3.3 expression is stimulated following the inhibition of DNA synthesis through the elimination of the transcription elongation block. Interestingly, both the in vivo and in vitro experiments have revealed that the transcriptional block/termination sites are positioned immediately downstream of a 73 bp region that has been over 90% conserved between the chicken and human H3.3 genes. The extreme conservation of this intronic region suggests a possible role in maintaining cis-acting function. Electrophoretic mobility shift experiments show that HeLa cell nuclear extracts contain protein factors that bind specifically to the region of transcription elongation block. Furthermore, we demonstrate a correlation between the protein binding activity and the transcriptional block in cells that have been either arrested at the initiation of S phase or were replication-interrupted by hydroxyurea. DNA footprinting experiments indicate that the region of protein binding is at the 3′ end of the conserved region and overlaps with one of the three in-vitro-mapped termination sites.


1994 ◽  
Vol 14 (8) ◽  
pp. 5268-5277 ◽  
Author(s):  
W Zerges ◽  
J D Rochaix

In the green alga Chlamydomonas reinhardtii, the nuclear mutations F34 and F64 have been previously shown to abolish the synthesis of the photosystem II core polypeptide subunit P6, which is encoded by the chloroplast psbC gene. In this report the functions encoded by F34 and F64 are shown to be required for translation of the psbC mRNA, on the basis of the finding that the expression of a heterologous reporter gene fused to the psbC 5' nontranslated leader sequence requires wild-type F34 and F64 alleles in vivo. Moreover, a point mutation in the psbC 5' nontranslated leader sequence suppresses this requirement for wild-type F34 function. In vitro RNA-protein cross-linking studies reveal that chloroplast protein extracts from strains carrying the F64 mutation contain an approximately 46-kDa RNA-binding protein. The absence of the RNA-binding activity of this protein in chloroplast extracts of wild-type strains suggests that it is related to the role of the F64-encoded function for psbC mRNA translation. The binding specificity of this protein appears to be for an AU-rich RNA sequence motif.


Sign in / Sign up

Export Citation Format

Share Document