scholarly journals Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants

2018 ◽  
Vol 475 (20) ◽  
pp. 3221-3238 ◽  
Author(s):  
Diego Avellaneda Matteo ◽  
Grace A. Wells ◽  
Lucas A. Luna ◽  
Adam J. Grunseth ◽  
Olga Zagnitko ◽  
...  

Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q). Here, we identify a third type of reactivity, deficient αKG and high D2HG production (R132L). We show that R132Q IDH1 has unique structural features and distinct reactivities towards mutant IDH1 inhibitors. Biochemical and cell-based assays demonstrate that while most tumor-relevant mutations were effectively inhibited by mutant IDH1 inhibitors, R132Q IDH1 had up to a 16 300-fold increase in IC50 versus R132H IDH1. Only compounds that inhibited wild-type (WT) IDH1 were effective against R132Q. This suggests that patients with a R132Q mutation may have a poor response to mutant IDH1 therapies. Molecular dynamics simulations revealed that near the NADP+/NADPH-binding site in R132Q IDH1, a pair of α-helices switches between conformations that are more wild-type-like or more mutant-like, highlighting mechanisms for preserved WT activity. Dihedral angle changes in the dimer interface and buried surface area charges highlight possible mechanisms for loss of inhibitor affinity against R132Q. This work provides a platform for predicting a patient's therapeutic response and identifies a potential resistance mutation that may arise upon treatment with mutant IDH inhibitors.

2017 ◽  
Vol 127 (10) ◽  
pp. 873-880 ◽  
Author(s):  
Jinhua Yu ◽  
Zhifeng Shi ◽  
Chunhong Ji ◽  
Yuxi Lian ◽  
Yuanyuan Wang ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi28-vi29 ◽  
Author(s):  
Ingo Mellinghoff ◽  
Timothy Cloughesy ◽  
Patrick Wen ◽  
Jennie Taylor ◽  
Elizabeth Maher ◽  
...  

Abstract BACKGROUND Ivosidenib (AG-120, IVO) is a first-in-class oral inhibitor of mutant isocitrate dehydrogenase 1 (mIDH1), and vorasidenib (AG-881, VOR) is an oral, potent, brain-penetrant inhibitor of mIDH1/2. Both have been evaluated in glioma patients in ongoing phase 1 studies. In orthotopic glioma models, IVO and VOR reduced 2-hydroxyglutarate (2-HG) levels by 85% and 98%, respectively, despite different brain-to-plasma ratios (< 0.04 vs 1.33). METHODS Patients with recurrent, nonenhancing, WHO-2016 grade 2/3, mIDH1-R132H oligodendroglioma or astrocytoma undergoing craniotomy were randomized 2:2:1 to IVO 500mg QD, VOR 50mg QD, or no treatment (cohort 1), or 1:1 to IVO 250mg BID or VOR 10mg QD (cohort 2), for 4 weeks preoperatively. Postoperatively, patients continued receiving IVO or VOR (control patients were randomized 1:1 to IVO or VOR). Tumors were assessed for mIDH1 status, cellularity, and 2-HG and drug concentrations. Treated subjects were compared with controls and mIDH1/wild-type banked reference samples. Primary endpoint: tumor 2-HG concentration following IVO or VOR. RESULTS As of March 1, 2019, 27 patients (18 men; 25/2 grade 2/3) were randomized preoperatively in cohort 1 (IVO 10, VOR 12, untreated 5): 27 received drug (IVO 13, VOR 14); 1 discontinued VOR postoperatively due to disease progression. Of 26 tumors analyzed, 22 were evaluable. Mean brain-to-plasma ratios: 0.13 IVO, 1.59 VOR. Relative to untreated samples, IVO and VOR reduced tumor 2-HG by 92.0% (95% CI 73.2, 97.4) and 92.5% (95% CI 78.1, 97.7), respectively. Common (≥ 4 patients) TEAEs (all cohort 1 patients, all grades): diarrhea (37.0%), constipation, hypocalcemia, and nausea (each 18.5%), anemia, hyperglycemia, pruritus, headache, and fatigue (each 14.8%). Cohort 2 has completed accrual, with analyses ongoing. CONCLUSIONS In cohort 1 of this phase 1 perioperative study, IVO and VOR demonstrated brain penetrance and lowered 2-HG compared with controls. Updated data from both cohorts will be presented.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 740
Author(s):  
Joi Weeks ◽  
Alexandra I. Strom ◽  
Vinnie Widjaja ◽  
Sati Alexander ◽  
Dahra K. Pucher ◽  
...  

Isocitrate dehydrogenase (IDH1) catalyzes the reversible NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG). IDH1 mutations, primarily R132H, drive > 80% of low-grade gliomas and secondary glioblastomas and facilitate the NADPH-dependent reduction of αKG to the oncometabolite D-2-hydroxyglutarate (D2HG). While the biochemical features of human WT and mutant IDH1 catalysis have been well-established, considerably less is known about mechanisms of regulation. Proteomics studies have identified lysine acetylation in WT IDH1, indicating post-translational regulation. Here, we generated lysine to glutamine acetylation mimic mutants in IDH1 to evaluate the effects on activity. We show that mimicking lysine acetylation decreased the catalytic efficiency of WT IDH1, with less severe catalytic consequences for R132H IDH1.


2013 ◽  
Vol 34 (2) ◽  
pp. E2 ◽  
Author(s):  
Gavin P. Dunn ◽  
Ovidiu C. Andronesi ◽  
Daniel P. Cahill

The characterization of the genomic alterations across all human cancers is changing the way that malignant disease is defined and treated. This paradigm is extending to glioma, where the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioma and other IDH-mutant cancers. The IDH1 mutations are present in the vast majority of low-grade gliomas and secondary glioblastomas. Rapidly emerging work on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome, transcriptional programs, hypoxia-inducible factor biology, and development. In the brief time since its discovery, knowledge of the IDH mutation status has had significant translational implications, and diagnostic tools are being used to monitor its expression and function. The concept of IDH1-mutant versus IDH1-wild type will become a critical early distinction in diagnostic and treatment algorithms.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi173-vi173
Author(s):  
Donghyun Hong ◽  
Noriaki Minami ◽  
Céline Taglang ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
...  

Abstract Gliomas are the most prevalent type of brain tumor in the central nervous system. Mutations in the cytosolic enzyme isocitrate dehydrogenase 1 (IDH1) are a common feature of primary low-grade gliomas, catalyzing the conversion of α-ketoglutarate (αKG) to the oncometabolite 2-hydroxyglutarate (2HG), and mutant IDH1 is a therapeutic target for these tumors. Several mutant IDH inhibitors are currently in clinical trials, nonetheless, complementary non-invasive early biomarkers to assess drug delivery and potential therapeutic response are still needed. The goal of this study was therefore to determine the potential of 1H and hyperpolarized 13C magnetic resonance spectroscopy (MRS)-based biomarkers as indicators of mutant IDH1 low-grade glioma response to treatment with the clinically-relevant IDH1 inhibitor BAY-1436032 in cells and animal models. Immortalized human astrocytes engineered to express mutant IDH1 were treated with 500nM (IC50 value) of BAY-1436032 and BT257 tumors implanted in rats were treated with 150mg/kg of BAY-1436032. To assess steady-state metabolite levels, 1H MRS spectra were acquired on a 500 MHz MRS cancer for cells and a 3 T scanner for animal studies. To assess metabolic fluxes, we used hyperpolarized 13C MRS and probed the fate of hyperpolarized [1-13C]αKG. 1H MRS showed a significant decrease in 2HG as well as a significant increase in glutamate (Glu) and phosphocholine (PCh) following BAY-1436032 treatment in both cell and animal models compared to controls. Furthermore, hyperpolarized 13C MRS showed that hyperpolarized 2HG production from hyperpolarized [1-13C]αKG was decreased and hyperpolarized glutamate production from hyperpolarized [1-13C]αKG was increased in the BAY-1436032 treated groups compared to controls. These findings are consistent with our previous study, which investigated the MRS-detectable consequences of two other mutant IDH inhibitors: AG120 and AG881. Collectively, our work identifies translatable MRS-based metabolic biomarkers of mutant IDH1 inhibition.


2020 ◽  
Vol 38 (29) ◽  
pp. 3398-3406 ◽  
Author(s):  
Ingo K. Mellinghoff ◽  
Benjamin M. Ellingson ◽  
Mehdi Touat ◽  
Elizabeth Maher ◽  
Macarena I. De La Fuente ◽  
...  

PURPOSE Diffuse gliomas are malignant brain tumors that include lower-grade gliomas (LGGs) and glioblastomas. Transformation of low-grade glioma into a higher tumor grade is typically associated with contrast enhancement on magnetic resonance imaging. Mutations in the isocitrate dehydrogenase 1 ( IDH1) gene occur in most LGGs (> 70%). Ivosidenib is an inhibitor of mutant IDH1 (mIDH1) under evaluation in patients with solid tumors. METHODS We conducted a multicenter, open-label, phase I, dose escalation and expansion study of ivosidenib in patients with m IDH1 solid tumors. Ivosidenib was administered orally daily in 28-day cycles. RESULTS In 66 patients with advanced gliomas, ivosidenib was well tolerated, with no dose-limiting toxicities reported. The maximum tolerated dose was not reached; 500 mg once per day was selected for the expansion cohort. The grade ≥ 3 adverse event rate was 19.7%; 3% (n = 2) were considered treatment related. In patients with nonenhancing glioma (n = 35), the objective response rate was 2.9%, with 1 partial response. Thirty of 35 patients (85.7%) with nonenhancing glioma achieved stable disease compared with 14 of 31 (45.2%) with enhancing glioma. Median progression-free survival was 13.6 months (95% CI, 9.2 to 33.2 months) and 1.4 months (95% CI, 1.0 to 1.9 months) for the nonenhancing and enhancing glioma cohorts, respectively. In an exploratory analysis, ivosidenib reduced the volume and growth rates of nonenhancing tumors. CONCLUSION In patients with m IDH1 advanced glioma, ivosidenib 500 mg once per day was associated with a favorable safety profile, prolonged disease control, and reduced growth of nonenhancing tumors.


2020 ◽  
Vol 19 ◽  
pp. 117693512091583 ◽  
Author(s):  
Mohammed Amine Bendahou ◽  
Housna Arrouchi ◽  
Wiame Lakhlili ◽  
Loubna Allam ◽  
Tarik Aanniz ◽  
...  

Introduction: The emergence of new omics approaches, such as genomic algorithms to identify tumor mutations and molecular modeling tools to predict the three-dimensional structure of proteins, has facilitated the understanding of the dynamic mechanisms involved in the pathogenesis of low-grade gliomas including oligodendrogliomas and astrocytomas. Methods: In this study, we targeted known mutations involved in low-grade gliomas, starting with the sequencing of genomic regions encompassing exon 4 of isocitrate dehydrogenase 1 ( IDH1) and isocitrate dehydrogenase 2 ( IDH2) and the four exons (5-6 and 7-8) of TP53 from 32 samples, followed by computational analysis to study the impact of these mutations on the structure and function of 3 proteins IDH1, IDH2, and p53. Results: We obtain a mutation that has an effect on the catalytic site of the protein IDH1 as R132H and on the catalytic site of the protein IDH2 as R172M. Other mutations at p53 have been identified as K305N, which is a pathogenic mutation; R175 H, which is a benign mutation; and R158G, which disrupts the structural conformation of the tumor suppressor protein. Conclusion: In low-grade gliomas, mutations in IDH1, IDH2, and TP53 may be the key to tumor progression because they have an effect on the function of the protein such as mutations R132H in IDH1 and R172M in IDH2, which change the function of the enzyme alpha-ketoglutarate, or R158G in TP53, which affects the structure of the generated protein, thus their importance in understanding gliomagenesis and for more accurate diagnosis complementary to the anatomical pathology tests.


2017 ◽  
Vol 114 (40) ◽  
pp. 10743-10748 ◽  
Author(s):  
Tali Mazor ◽  
Charles Chesnelong ◽  
Aleksandr Pankov ◽  
Llewellyn E. Jalbert ◽  
Chibo Hong ◽  
...  

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


2019 ◽  
Vol 18 ◽  
pp. 153303381987716 ◽  
Author(s):  
Haixia Ding ◽  
Yong Huang ◽  
Zhiqiang Li ◽  
Sirui Li ◽  
Qiongrong Chen ◽  
...  

Isocitrate dehydrogenase mutational status defines distinct biologic behavior and clinical outcomes in low-grade gliomas. We sought to determine magnetic resonance imaging characteristics associated with isocitrate dehydrogenase mutational status to evaluate the predictive roles of magnetic resonance imaging features in isocitrate dehydrogenase mutational status and therefore their potential impact on the determination of clinical target volume in radiotherapy. Forty-eight isocitrate dehydrogenase-mutant and 28 isocitrate dehydrogenase–wild-type low-grade gliomas were studied. Isocitrate dehydrogenase mutation was related to more frequency of cortical involvement compared to isocitrate dehydrogenase–wild-type group (34/46 vs 6/24, P = .0001). Peritumoral edema was less frequent in isocitrate dehydrogenase–mutant tumors (32.6% vs 58.3% for isocitrate dehydrogenase–wild-type tumors, P = .0381). Isocitrate dehydrogenase–wild-type tumors were more likely to have a nondefinable border, while isocitrate dehydrogenase–mutant tumors had well-defined borders (66.7% vs 39.1%, P = .0287). Only 8 (17.4%) of 46 of the isocitrate dehydrogenase–mutant tumors demonstrated marked enhancement, while this was 66.7% in isocitrate–wild-type tumors ( P < .0001). Choline–creatinine ratio for isocitrate dehydrogenase–wild-type tumors was significantly higher than that for isocitrate dehydrogenase–mutant tumors. In conclusion, frontal location, well-defined border, cortical involvement, less peritumoral edema, lack of enhancement, and low choline–creatinine ratio were predictive for the definition of isocitrate dehydrogenase–mutant low-grade gliomas. Magnetic resonance imaging can provide an advantage in the detection of isocitrate dehydrogenase status indirectly and indicate the need to explore new design for treatment planning in gliomas. Choline–creatinine ratio in magnetic resonance spectroscopy could be a potential more reasonable reference for the new design of delineation of target volume in low-grade gliomas.


Sign in / Sign up

Export Citation Format

Share Document