scholarly journals The autocrine role of FGF21 in cultured adipocytes

2020 ◽  
Vol 477 (13) ◽  
pp. 2477-2487
Author(s):  
Sarah Justesen ◽  
Kirsten V. Haugegaard ◽  
Jacob B. Hansen ◽  
Harald S. Hansen ◽  
Birgitte Andersen

Exposure to cold alters glucose and lipid metabolism of white and brown adipose tissue via activation of β-adrenergic receptor (ADRB). Fibroblast growth factor 21 (FGF21) has been shown to be locally released from adipose tissue upon activation of ADRBs and FGF21 increases glucose uptake in adipocytes. Therefore, FGF21 may play an autocrine role in inducing glucose uptake after β-adrenergic stimulation. To determine the putative autocrine role of FGF21, we stimulated three different types of adipocytes in vitro with Isoprenaline (Iso), an ADRB agonist, in the presence or absence of the FGF receptor (FGFR) inhibitor PD 173074. The three cell lines represent white (3T3-L1), beige (ME3) and brown (WT-1) adipocyte phenotypes, respectively. All three cells systems expressed β-klotho (KLB) and FGFR1 after differentiation and treatment with recombinant FGF21 increased glucose uptake in 3T3-L1 and WT-1 adipocytes, while no significant effect was observed in ME3. Oppositely, all three cell lines responded to Iso treatment and an increase in glucose uptake and lipolysis were observed. Interestingly, in response to the Iso treatment only the WT-1 adipocytes showed an increase in FGF21 in the medium. This was consistent with the observation that PD 173074 decreased Iso-induced glucose uptake in the WT-1 adipocytes. This suggests that FGF21 plays an autocrine role and increases glucose uptake after β-adrenergic stimulation of cultured brown WT-1 adipocytes.

2018 ◽  
Vol 315 (5) ◽  
pp. E815-E824 ◽  
Author(s):  
Sébastien M. Labbé ◽  
Alexandre Caron ◽  
William T. Festuccia ◽  
Roger Lecomte ◽  
Denis Richard

Brown adipose tissue (BAT) thermogenesis is a key controller of energy metabolism. In response to cold or other adrenergic stimuli, brown adipocytes increase their substrate uptake and oxidative activity while uncoupling ATP synthesis from the mitochondrial respiratory chain activity. Brown adipocytes are found in classic depots such as in the interscapular BAT (iBAT). They can also develop in white adipose tissue (WAT), such as in the inguinal WAT (iWAT), where their presence has been associated with metabolic improvements. We previously reported that the induction of oxidative metabolism in iWAT is low compared with that of iBAT, even after sustained adrenergic stimulation. One explanation to this apparent lack of thermogenic ability of iWAT is the presence of an active iBAT, which may prevent the full activation of iWAT. In this study, we evaluated whether iBAT denervation-induced browning of white fat enhanced the thermogenic activity of iWAT following cold acclimation, under beta-3 adrenergic stimulation (CL 316,243). Following a bilateral denervation of iBAT, we assessed energy balance, evaluated the oxidative activity of iBAT and iWAT using 11C-acetate, and quantified the dynamic glucose uptake of those tissues using 2-deoxy-2-[18F]- fluoro-d-glucose. Our results indicate that despite portraying marked browning and mildly enhanced glucose uptake, iWAT of cold-adapted mice does not exhibit significant oxidative activity following beta-3 adrenergic stimulation in the absence of a functional iBAT. The present results suggest that iWAT is not readily recruitable as a thermogenic organ even when functional iBAT is lacking.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4238-4245 ◽  
Author(s):  
Julieta Díaz-Delfín ◽  
Elayne Hondares ◽  
Roser Iglesias ◽  
Marta Giralt ◽  
Carme Caelles ◽  
...  

Fibroblast growth factor 21 (FGF21) is a member of the FGF family that reduces glycemia and ameliorates insulin resistance. Adipose tissue is a main target of FGF21 action. Obesity is associated with a chronic proinflammatory state. Here, we analyzed the role of proinflammatory signals in the FGF21 pathway in adipocytes, evaluating the effects of TNF-α on β-Klotho and FGF receptor-1 expression and FGF21 action in adipocytes. We also determined the effects of rosiglitazone on β-Klotho and FGF receptor-1 expression in models of proinflammatory signal induction in vitro and in vivo (high-fat diet-induced obesity). Because c-Jun NH2-terminal kinase 1 (JNK1) serves as a sensing juncture for inflammatory status, we also evaluated the involvement of JNK1 in the FGF21 pathway. TNF-α repressed β-Klotho expression and impaired FGF21 action in adipocytes. Rosiglitazone prevented the reduction in β-Klotho expression elicited by TNF-α. Moreover, β-Klotho levels were reduced in adipose tissue from high-fat diet-induced obese mice, whereas rosiglitazone restored β-Klotho to near-normal levels. β-Klotho expression was increased in white fat from JNK1−/− mice. The absence of JNK1 increased the responsiveness of mouse embryonic fibroblast-derived adipocytes and brown adipocytes to FGF21. In conclusion, we show that proinflammatory signaling impairs β-Klotho expression and FGF21 responsiveness in adipocytes. We also show that JNK1 activity is involved in modulating FGF21 effects in adipocytes. The impairment in the FGF21 response machinery in adipocytes and the reduction in FGF21 action in response to proinflammatory signals may play important roles in metabolic alterations in obesity and other diseases associated with enhanced inflammation.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 756
Author(s):  
Paweł A. Kołodziejski ◽  
Ewa Pruszyńska-Oszmałek ◽  
Tatiana Wojciechowicz ◽  
Maciej Sassek ◽  
Natalia Leciejewska ◽  
...  

Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shu Fang ◽  
Yingying Cai ◽  
Fuping Lyu ◽  
Hongbin Zhang ◽  
Chunyan Wu ◽  
...  

Background. The role of exendin-4 in brown adipose tissue (BAT) activation was not very clear. This study is to verify the role of BAT involved in renal benefits of exendin-4 in diabetes mellitus (DM). Methods. In vivo, C57BL/6 mice were randomly divided into nondiabetic (control) and diabetic groups (DM). The diabetic mice were randomized into a control group (DM-Con), BAT-excision group (DM+Exc), exendin-4-treated group (DM+E4), and BAT-excision plus exendin-4-treated group (DM+Exc+E4). The weight, blood glucose and lipids, 24 h urine albumin and 8-OH-dG, and renal fibrosis were analyzed. In vitro, we investigated the role of exendin-4 in the differentiation process of 3T3-L1 and brown preadipocytes and its effect on the rat mesangial cells induced by oleate. Results. The expressions of UCP-1, PGC-1α, ATGL, and CD36 in BAT of DM mice were all downregulated, which could be upregulated by exendin-4 treatment with significant effects on ATGL and CD36. BAT-excision exacerbated high blood glucose (BG) with no significant effect on the serum lipid level. Exendin-4 significantly lowered the level of serum triglycerides (TG) and low-density lipoprotein- (LDL-) c, 24 h urine albumin, and 8-OH-dG; improved renal fibrosis and lipid accumulation; and activated renal AMP-activated protein kinase (AMPK) in diabetic mice regardless of BAT excision. In vitro, there was no significant effect of exendin-4 on brown or white adipogenesis. However, exendin-4 could improve lipid accumulation and myofibroblast-like phenotype transition of mesangial cells induced by oleate via activating the AMPK pathway. Conclusions. Exendin-4 could decrease the renal lipid deposit and improve diabetic nephropathy via activating the renal AMPK pathway independent of BAT activation.


2009 ◽  
Vol 296 (5) ◽  
pp. R1327-R1335 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Véronique Turcotte ◽  
Mathieu Laplante ◽  
Meltem Sariahmetoglu ◽  
...  

We investigated the mechanisms whereby peroxisome proliferator-activated receptor-γ (PPARγ) agonism affects glucose and lipid metabolism in brown adipose tissue (BAT) by studying the impact of PPARγ activation on BAT glucose uptake and metabolism, lipogenesis, and mRNA levels plus activities of enzymes involved in triacylglycerol (TAG) synthesis. Interscapular BAT of rats treated or not with rosiglitazone (15 mg·kg−1·day−1, 7 days) was evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (PAP or lipin-1), and diacylglycerol acyltransferase (DGAT). Rosiglitazone increased BAT mass without affecting whole tissue glucose uptake. BAT glycogen content (−80%), its synthesis from glucose (−50%), and mRNA levels of UDP-glucose pyrophosphorylase (−40%), which generates UDP-linked glucose for glycogen synthesis, were all reduced by rosiglitazone. In contrast, BAT TAG-glycerol synthesis in vivo and glucose incorporation into TAG-glycerol in vitro were stimulated by the agonist along with the activities and mRNA levels of glycerol 3-phosphate-generating phosphoenolpyruvate carboxykinase and glycerokinase. Furthermore, rosiglitazone markedly increased the activities of GPAT and DGAT but not those of lipin-1-mediated PAP-1, enzymes involved in the sequential acylation of glycerol 3-phosphate and TAG synthesis. Because an adequate supply of fatty acids is essential for BAT nonshivering thermogenesis, the enhanced ability of BAT to synthesize TAG under PPARγ activation may constitute an important mechanism by which lipid substrates are stored in preparation for an eventual thermogenic activation.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
JooYeon Jhun ◽  
Jin Seok Woo ◽  
Seung Hoon Lee ◽  
Jeong-Hee Jeong ◽  
KyungAh Jung ◽  
...  

Obesity, a condition characterized by excessive accumulation of body fat, is a metabolic disorder related to an increased risk of chronic inflammation. Obesity is mediated by signal transducer and activator of transcription (STAT) 3, which is regulated by genes associated with retinoid-interferon-induced mortality (GRIM) 19, a protein ubiquitously expressed in various human tissues. In this study, we investigated the role of GRIM19 in diet-induced obese C57BL/6 mice via intravenous or intramuscular administration of a plasmid encoding GRIM19. Splenocytes from wild-type and GRIM19-overexpressing mice were compared using enzyme-linked immunoassay, real-time polymerase chain reaction, Western blotting, flow cytometry, and histological analyses. GRIM19 attenuated the progression of obesity by regulating STAT3 activity and enhancing brown adipose tissue (BAT) differentiation. GRIM19 regulated the differentiation of mouse-derived 3T3-L1 preadipocytes into adipocytes, while modulating gene expression in white adipose tissue (WAT) and BAT. GRIM19 overexpression reduced diet-induced obesity and enhanced glucose and lipid metabolism in the liver. Moreover, GRIM19 overexpression reduced WAT differentiation and induced BAT differentiation in obese mice. GRIM19-transgenic mice exhibited reduced mitochondrial superoxide levels and a reciprocal balance between Th17 and Treg cells. These results suggest that GRIM19 attenuates the progression of obesity by controlling adipocyte differentiation.


2018 ◽  
Author(s):  
Essam A. Assali ◽  
Anthony E. Jones ◽  
Michaela Veliova ◽  
Mahmoud Taha ◽  
Nathanael Miller ◽  
...  

AbstractA sharp increase in mitochondrial Ca2+ marks the activation of the brown adipose tissue (BAT) thermogenesis, yet the mechanisms preventing Ca2+ deleterious effects are poorly understood. Here, we show that adrenergic stimulation of BAT activates a PKA-dependent mitochondrial Ca2+ extrusion via the mitochondrial Na+/Ca2+ exchanger, NCLX. Adrenergic stimulation of NCLX-ablated brown adipocytes (BA) induces a profound mitochondrial Ca2+ overload and impaired uncoupled respiration. Core body temperature, PET imaging and VO2 measurements confirm a BAT specific thermogenic defect in NCLX-null mice.We show that mitochondrial Ca2+ overload induced by adrenergic stimulation of NCLX-null BAT, triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to remarkable mitochondrial swelling, Cytochrome c release and cell death in BAT. However, treatment with mPTP inhibitors rescue mitochondrial respiratory function and thermogenesis in NCLX-null BA, in vitro and in vivo.Our findings identify a novel pathway enabling non-lethal mitochondrial Ca2+ elevation during adrenergic stimulation of uncoupled respiration. Deletion of NCLX transforms the adrenergic pathway responsible for the stimulation of thermogenesis into a death pathway.


2014 ◽  
Vol 307 (9) ◽  
pp. E793-E799 ◽  
Author(s):  
G. Andres Contreras ◽  
Yun-Hee Lee ◽  
Emilio P. Mottillo ◽  
James G. Granneman

Brown adipocytes (BA) generate heat in response to sympathetic activation and are the main site of nonshivering thermogenesis in mammals. Although most BA are located in classic brown adipose tissue depots, BA are also abundant in the inguinal white adipose tissue (iWAT) before weaning. The number of BA is correlated with the density of sympathetic innervation in iWAT; however, the role of continuous sympathetic tone in the establishment and maintenance of BA in WAT has not been investigated. BA marker expression in iWAT was abundant in weaning mice but was greatly reduced by 8 wk of age. Nonetheless, BA phenotype could be rapidly reinstated by acute β3-adrenergic stimulation with CL-316,243 (CL). Genetic tagging of adipocytes with adiponectin-CreERT2 demonstrated that CL reinstates uncoupling protein 1 (UCP1) expression in adipocytes that were present before weaning. Chronic surgical denervation dramatically reduced the ability of CL to induce the expression of UCP1 and other BA markers in the tissue as a whole, and this loss of responsiveness was prevented by concurrent treatment with CL. These results indicate that ongoing sympathetic activity is critical to preserve the ability of iWAT fat cells to express a BA phenotype upon adrenergic stimulation.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A437-A438
Author(s):  
Martina Chrudinova ◽  
Moreau Francois ◽  
Hye Lim Noh ◽  
Terezie Panikova ◽  
Lenka Zakova ◽  
...  

Abstract The members of the insulin superfamily are well conserved across the evolution tree. We recently showed that four viruses in the Iridoviridae family possess genes that share high similarity with human insulin and IGF-1. By chemically synthesizing single chain (sc, IGF-1 like) forms of these viral insulin/IGF-1 like peptides (VILPs), we previously showed that sc VILPs have insulin/IGF properties in vitro and in vivo. However, characteristics of double chain (dc, insulin-like) VILPs remain unknown. In this study, we characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1). We showed that GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A, IR-B) and they bind to IGF-1R with a higher affinity than human insulin. These dcVILPs stimulate receptor phosphorylation and post-receptor signaling in vitro and in vivo. LCDV-1 dcVILP stimulated a weak response in in vitro signaling experiments, although we could not determine binding competition. Both GIV and SGIV dcVILPs stimulated glucose uptake in mice. In vivo infusion experiments in awake mice revealed that while insulin (2.5 mU/kg/min) and GIV dcVILP (125 mU/kg/min) stimulate a comparable glucose uptake in heart, skeletal muscle and brown adipose tissue, GIV dcVILP stimulates ~2 fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This is due to increased Akt phosphorylation and glucose transporter type 4 (GLUT4) expression compared to insulin specifically in WAT. Taken together, these results show that dc GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. This observation evokes questions about their potential roles in human disease including diabetes and cancer. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action and design new analogues that specifically target the tissues.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lachlan Van Schaik ◽  
Christine Kettle ◽  
Rodney Green ◽  
Helen R. Irving ◽  
Joseph A. Rathner

The impact of brown adipose tissue (BAT) metabolism on understanding energy balance in humans is a relatively new and exciting field of research. The pathogenesis of obesity can be largely explained by an imbalance between caloric intake and energy expenditure, but the underlying mechanisms are far more complex. Traditional non-selective sympathetic activators have been used to artificially elevate energy utilization, or suppress appetite, however undesirable side effects are apparent with the use of these pharmacological interventions. Understanding the role of BAT, in relation to human energy homeostasis has the potential to dramatically offset the energy imbalance associated with obesity. This review discusses paradoxical effects of caffeine on peripheral adenosine receptors and the possible role of adenosine in increasing metabolism is highlighted, with consideration to the potential of central rather than peripheral mechanisms for caffeine mediated BAT thermogenesis and energy expenditure. Research on the complex physiology of adipose tissue, the embryonic lineage and function of the different types of adipocytes is summarized. In addition, the effect of BAT on overall human metabolism and the extent of the associated increase in energy expenditure are discussed. The controversy surrounding the primary β-adrenoceptor involved in human BAT activation is examined, and suggestions as to the lack of translational findings from animal to human physiology and human in vitro to in vivo models are provided. This review compares and distinguishes human and rodent BAT effects, thus developing an understanding of human BAT thermogenesis to aid lifestyle interventions targeting obesity and metabolic syndrome. The focus of this review is on the effect of BAT thermogenesis on overall metabolism, and the potential therapeutic effects of caffeine in increasing metabolism via its effects on BAT.


Sign in / Sign up

Export Citation Format

Share Document