scholarly journals Preparation and characterization of armadillo submandibular glycoproteins

1977 ◽  
Vol 161 (1) ◽  
pp. 37-47 ◽  
Author(s):  
A M Wu ◽  
W Pigman

The nine-banded armadillo (Dasypus novemcinctus mexicanus Peters) was chosen for this study so that a comparison could be made of the salivary mucus glycoproteins of an ancient mammalian species with those derived from previously studied, more highly evolved species. Two mucus glycoproteins, armadillo submandibular glycoprotein A and armadillo submandibular glycoprotein B, were prepared from the armadillo submandibular gland by a modification of the method of Tettamanti & Pigman (1968) (Arch. Biochem. Biophys. 124, 41-50). The composition of glycoprotein A is the simplest one among the known mucus glycoproteins. Six amino acids constitute 98.5 mol/100mol of the protein of glycoprotein A and 82 mol/100 mol of that of glycoprotein B. These are serine and threonine (which make up 40-50% of the molar amino acid composition), glutamic acid, glycine alanine and valine. Proline is absent from glycoprotein A and comprises only 2.3% of glycoprotein B. For both glycoproteins, the protein content, as determined by the method of Lowry, Rosebrough, Farr & Randall (1951) (J. Biol. Chem 193, 265-275), with bovine serum albumin as standard, was nearly 60% higher than when determined by the sum of the amino acids. The ratios of total mol of amino acid/total mol of carbohydrate are 1:0.63 for glycoprotein A and 1:0.68 for glycoprotein B, N-Acetylneuraminic acid and N-acetylgalactosamine, in a molar ratio of about 0.35:1.00, are the principal carbohydrates present in both glycoproteins. Neutral sugars seem to be absent from glycoprotein A, but galactose and fucose are present in glycoprotein B. The carbohydrate side chains in glycoprotein A are composed of about two-thirds monosaccharide and one-third disaccharide residues, whereas those of glycoprotein B are more complex. For both glycoproteins, essentially all of the N-acetylgalactosamine was attached O-glycosidically to the hydroxyamino acid residues of the protein core. The linkage of N-acetylneuraminic acid glycoprotein A was extremely sensitive to dilute acid and neuraminidase. Glycoprotein B has chemical properties similar to those of glycoprotein A. However, whereas glycoprotein A was susceptible to both Clostridium perfringens and Vibrio cholerae neuraminidases, only the latter enzyme had an effect on glycoprotein B at pH 4.75. Both glycoproteins were homogeneous by cellulose acetate electrophoresis and ultracentrifugal analyses. The apparent mol.wts. of glycoprotein A and glycoprotein B were 7.8 X 10(4) and 3.1 X 10(4) respectively.

1991 ◽  
Vol 58 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Thérèse Desrosiers ◽  
Laurent Savoie

SummaryThe effect of heat treatments, at various water activities (αw), on digestibility and on the availabilities of amino acids of whey protein samples in the presence of lactose was estimated by an in vitro digestion method with continuons dialysis. Four αw (0·3, 0·5, 0·7 and 0·97), three temperatures (75, 100 and 121 °C) and three heating periods (50, 500 and 5000 s) were selected. The initial lysine: lactose molar ratio was 1:1. Amino acid profiles showed that excessive heating of whey (121 °C, 5000 s) destroyed a significant proportion of cystine at all αw, lysine at αw 0·3, 0·5 and 0·7, and arginine at αw 0·5 and 0·7. At αw 0·3, 0·5 and 0·7, protein digestibility decreased (P < 0·05) as the temperature increased from 75 to 121 °C for a heating period of 5000 s, and as the heating time was prolonged from 500 to 5000 s at 121 °C. Excessive heating also decreased (P < 0·05) the availabilities of ail amino acids at αw 0·3, 0·5 and 0·7. The availabilities of lysine, proline, aspartic acid, glutamic acid, threonine, alanine, glycine and serine were particularly affected. Severe heating at αw 0·97 did not seem to favour the Maillard reaction, but the availabilities of cystine, tyrosine and arginine were decreased, probably as a result of structural modifications of the protein upon heating. Heating whey protein concentrates in the presence of lactose not only affected lysine, but also impaired enzymic liberation of other amino acids, according to the severity of heat treatments and αw.


2009 ◽  
Vol 419 (3) ◽  
pp. 661-668 ◽  
Author(s):  
Blandine Maître ◽  
Catherine Angénieux ◽  
Virginie Wurtz ◽  
Emilie Layre ◽  
Martine Gilleron ◽  
...  

CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32–333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e α-chain with β2-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3131
Author(s):  
Olga D. Novikova ◽  
Valentina A. Khomenko ◽  
Natalia Yu. Kim ◽  
Galina N. Likhatskaya ◽  
Lyudmila A. Romanenko ◽  
...  

Marinomonas primoryensis KMM 3633T, extreme living marine bacterium was isolated from a sample of coastal sea ice in the Amursky Bay near Vladivostok, Russia. The goal of our investigation is to study outer membrane channels determining cell permeability. Porin from M. primoryensis KMM 3633T (MpOmp) has been isolated and characterized. Amino acid analysis and whole genome sequencing were the sources of amino acid data of porin, identified as Porin_4 according to the conservative domain searching. The amino acid composition of MpOmp distinguished by high content of acidic amino acids and low content of sulfur-containing amino acids, but there are no tryptophan residues in its molecule. The native MpOmp existed as a trimer. The reconstitution of MpOmp into black lipid membranes demonstrated its ability to form ion channels whose conductivity depends on the electrolyte concentration. The spatial structure of MpOmp had features typical for the classical gram-negative porins. However, the oligomeric structure of isolated MpOmp was distinguished by very low stability: heat-modified monomer was already observed at 30 °C. The data obtained suggest the stabilizing role of lipids in the natural membrane of marine bacteria in the formation of the oligomeric structure of porin.


1983 ◽  
Vol 6 (5) ◽  
pp. 267-270 ◽  
Author(s):  
Z.Q. Shi ◽  
T.M.S. Chang

In order to clarify wether coated charcoal hemoperfusion is capable of normalizing amino acid disturbances in hepatic coma, in vitro adsorption and in vitro hemoperfusion studies were carried out. We have found that collodion-coated activated charcoal beads preferentially removed much more aromatic acids (AAA) than branched chain amino acids (BCAA). In the in vitro adsorption experiment with 50 μM amino acid standards aqueous solution, 99% of AAAs were removed by charcoal while only 50 to 81% of BCAAs were removed. As the concentration of amino acids in solution was doubled from μM to 100 μM, BCAA removal was halved while about 90% of AAA was still being removed. In vitro hemoperfusion with heparinized blood from hepatic failure rats, the clearance and the removal of AAAs were significantly greater than those of BCAAs. Consequently, the molar ratio of BCAA over AAA was markedly improved from the initial 1.09 to 3.87 after 60 min of hemoperfusion. Thus, we have demonstrated the preferential adsorption of aromatic amino acids by collodion-coated charcoal beads. The correction of BCAA/AAA molar ratio is also demonstrated.


2016 ◽  
Vol 3 (12) ◽  
pp. 1699-1704 ◽  
Author(s):  
Nicola Zanna ◽  
Andrea Merlettini ◽  
Claudia Tomasini

Nine amino acids with different chemical properties have been chosen to promote the formation of hydrogels based on the bolamphiphilic gelator A: three basic amino acids (arginine, histidine and lysine), one acidic amino acid (aspartic acid), two neutral aliphatic amino acids (alanine and serine) and three neutral aromatic amino acids (phenylalanine, tyrosine and tryptophan).


2020 ◽  
Vol 58 (8) ◽  
pp. 687-694
Author(s):  
Kumarswamy Ummiti ◽  
J V Shanmukha Kumar

Abstract Ganirelix is a synthetic decapeptide linked with nine different amino acids. To understand the peptide amino acid sequence or primary structure, the first step is to determine the amino acid composition of the peptide which can be a determining factor for the peptide immunogenicity. Edman degradation is not a suitable analytical technique to identify amino acid sequence present in Ganirelix due to the absence of uncharged N-terminal amino group. To address this challenge, a pre-column derivatization method was developed with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. In the present work, the Ganirelix active pharmaceutical ingredient present in the injectable formulation was isolated by fraction collection and further purified by flash chromatography. The amino acid composition of Ganirelix is assayed by carrying out acid hydrolysis with 6 mol L−1 hydrochloric acid solution containing 1% phenol at 100°C for 24 h and derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent solution, followed by determination of individual amino acids by reverse-phase chromatography using a C18 column. High resolution was achieved for the nine amino acid mixture. The amino acid composition results of temperature-stressed Ganirelix generic product and reference listed drug are in good agreement with the theoretical molar ratio of label information.


2016 ◽  
Vol 66 (2) ◽  
pp. 269-277
Author(s):  
Renata Dyja ◽  
Barbara Dolińska ◽  
Florian Ryszka

Abstract The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine) from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II)/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2) of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose) is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan) that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan) after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol) is limited by the tyrosine low solubility in water.


1978 ◽  
Vol 24 (9) ◽  
pp. 1087-1092
Author(s):  
G. J. Ikin ◽  
H. J. Hope ◽  
R. A. Lachance

Some aspects of the growth and amino acid metabolism of Corynebacterium sepedonicum, the organism responsible for potato ring rot, have been studied in synthetic media. It has been demonstrated that organic sulfur is required for growth. Methionine supports growth and can be replaced by methionine sulfoxide and cystathionine. Methionine is a micrometabolite for this species as indicated by the fact that optimum growth can be obtained in an asparagines–methionine (asn-met) containing medium when the molar ratio of these amino acids is 56:1. Increasing the proportion of methionine does not increase the growth. Both asparagine and glutamine are metabolized very quickly and provide for equivalent rapid growth unlike aspartic and glutamic acids. In the case of the last two amino acids, growth can be increased if dibasic ammonium phosphate is added to the medium although this compound alone will not support growth in the culture medium. The intracellular soluble asparagine level is extremely low in cells from the asn-met medium indicating a high rate of metabolism compared to aspartic acid. Cystine and cysteine were found to be inhibitory to the organism: they do not affect the rate of uptake of asn or met but do alter the organism's metabolism as reflected by changes in the free amino acid pool. The concentrations of cystine and cysteine required for measurable inhibition are much higher than those found in soluble amino acids of potato tubers.


1985 ◽  
Vol 53 (02) ◽  
pp. 282-284 ◽  
Author(s):  
Karen L Kaplan ◽  
Stefan Niewiarowski

SummaryStandard nomenclature for a number of secreted platelet proteins was agreed upon by The Working Party on Secreted Platelet Proteins of the Subcommittee on Platelets. Platelet factor 4 will continue to be used for the molecule with high heparin affinity, subunit molecular weight of 7780, and the described amino acid sequence. β-Thromboglobulin will be used to designate β-Thromboglobulin (81 amino acids/subunit, β-mobility on cellulose-acetate electrophoresis, pI 7), low-affinity platelet factor 4 (85 amino acids/subunit, y-mobility on cellulose-acetate electrophoresis, pI 8), and platelet basic protein (94 amino acids/ subunit, pI 10) when these are measured immunologically in plasma, but that thromboglobulin with a superscript designation of the pI should be used when assays are conducted on samples after isoelectric focusing, and a subscript amino-terminal amino acid can be added when a purified protein is described. Thrombospondin will continue to be the designation for the high molecular weight trimer that has previously been called thrombospondin or glycoprotein G. Platelet derived growth factor will be used for the group of closely related proteins of molecular weight about 30,000 and isoelectric point about 10.


1987 ◽  
Vol 70 (2) ◽  
pp. 234-240
Author(s):  
Ernst Bayer ◽  
Hartmut Frank ◽  
Jürgen Gerhardt ◽  
Graeme Nicholson

Abstract The optical isomers of amino acids can be easily separated by gas chromatography using capillary columns coated with the chiral polysiloxane peptide, Chirasil-Val. Quantitative trace amino acid analysis in complex mixtures such as biological fluids, sea water, or protein hydrolysates can be achieved by enantiomer labeling: The D-amino acid enantiomers, which do not occur naturally, are added to the sample prior to analysis as internal standards. Because the D-enantiomers show the same physical and chemical properties as the natural L-enantiomers, they are ideal standard references. In routine analysis, the derivatization is achieved with a new automated derivatization robot. The D-standard serves as overall internal standard for the whole analytical procedure from sample enrichment to derivatization, chromatography, and response of the detector.


Sign in / Sign up

Export Citation Format

Share Document