scholarly journals Effect of experimental hyperthyroidism on skeletal-muscle proteolysis

1981 ◽  
Vol 194 (3) ◽  
pp. 685-690 ◽  
Author(s):  
W J Carter ◽  
W S van der Weijden Benjamin ◽  
F H Faas

It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis.

2007 ◽  
Vol 292 (2) ◽  
pp. E577-E584 ◽  
Author(s):  
Katsuji Aizawa ◽  
Motoyuki Iemitsu ◽  
Seiji Maeda ◽  
Subrina Jesmin ◽  
Takeshi Otsuki ◽  
...  

The functional importance of sex steroid hormones (testosterone and estrogens), derived from extragonadal tissues, has recently gained significant appreciation. Circulating dehydroepiandrosterone (DHEA) is peripherally taken up and converted to testosterone by 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, and testosterone in turn is irreversibly converted to estrogens by aromatase cytochrome P-450 (P450arom). Although sex steroid hormones have been implicated in skeletal muscle regulation and adaptation, it is unclear whether skeletal muscles have a local steroidogenic enzymatic machinery capable of metabolizing circulating DHEA. Thus, here, we investigate whether the three key steroidogenic enzymes (3β-HSD, 17β-HSD, and P450arom) are present in the skeletal muscle and are capable of generating sex steroid hormones. Consistent with our hypothesis, the present study demonstrates mRNA and protein expression of these enzymes in the skeletal muscle cells of rats both in vivo and in culture (in vitro). Importantly, we also show an intracellular formation of testosterone and estradiol from DHEA or testosterone in cultured muscle cells in a dose-dependent manner. These findings are novel and important in that they provide the first evidence showing that skeletal muscles are capable of locally synthesizing sex steroid hormones from circulating DHEA or testosterone.


2002 ◽  
Vol 50 (12) ◽  
pp. 1579-1589 ◽  
Author(s):  
Katsuya Kami ◽  
Emiko Senba

Although growth factors and cytokines play critical roles in skeletal muscle regeneration, intracellular signaling molecules that are activated by these factors in regenerating muscles have been not elucidated. Several lines of evidence suggest that leukemia inhibitory factor (LIF) is an important cytokine for the proliferation and survival of myoblasts in vitro and acceleration of skeletal muscle regeneration. To elucidate the role of LIF signaling in regenerative responses of skeletal muscles, we examined the spatial and temporal activation patterns of an LIF-associated signaling molecule, the signal transducer and activator transcription 3 (STAT3) proteins in regenerating rat skeletal muscles induced by crush injury. At the early stage of regeneration, activated STAT3 proteins were first detected in the nuclei of activated satellite cells and then continued to be activated in proliferating myoblasts expressing both PCNA and MyoD proteins. When muscle regeneration progressed, STAT3 signaling was no longer activated in differentiated myoblasts and myotubes. In addition, activation of STAT3 was also detected in myonuclei within intact sarcolemmas of surviving myofibers that did not show signs of necrosis. These findings suggest that activation of STAT3 signaling is an important molecular event that induces the successful regeneration of injured skeletal muscles.


1990 ◽  
Vol 79 (2) ◽  
pp. 139-147 ◽  
Author(s):  
M. Salleh M. Ardawi ◽  
Yasir S. Jamal

1. The effect of dexamethasone (30 μg day−-1 100 g−-1 body weight) on the regulation of glutamine metabolism was studied in skeletal muscles of rats after 9 days of treatment. 2. Dexamethasone resulted in negative nitrogen balance, and produced increases in the plasma concentrations of alanine (23.4%) and insulin (158%) but a decrease in the plasma concentration of glutamine (28.7%). 3. Dexamethasone treatment increased the rate of glutamine production in muscle, skin and adipose tissue preparations, with muscle production accounting for over 90% of total glutamine produced by the hindlimb. 4. Blood flow and arteriovenous concentration difference measurements across the hindlimb showed an increase in the net exchange rates of glutamine (25.3%) and alanine (90.5%) in dexamethasone-treated rats compared with corresponding controls. 5. Dexamethasone treatment produced significant decreases in the concentrations of skeletal muscle glutamine (51.8%) and 2-oxoglutarate (50.8%). The concentrations of alanine (16.2%), pyruvate (45.9%), ammonia (43.3%) and inosine 5′-phosphate (141.8%) were increased. 6. The maximal activity of glutamine synthetase was increased (21–34%), but there was no change in that of glutaminase, in muscles of dexamethasone-treated rats. 7. It is concluded that glucocorticoid administration enhances the rates of release of both glutamine and alanine from skeletal muscle of rats (both in vitro and in vivo). This may be due to changes in efflux and/or increased intracellular formation of glutamine and alanine.


1985 ◽  
Vol 63 (9) ◽  
pp. 1133-1138 ◽  
Author(s):  
M. H. Tan ◽  
A. Bonen

We studied the in vitro effect of corticosterone on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis in the soleus and extensor digitorum longus (EDL) of Swiss–Webster mice. In each experiment, one muscle (soleus/EDL) was incubated with corticosterone (0.1, 1, 50, and 100 μg/mL) and the respective contralateral muscle was incubated without corticosterone, but at the same insulin and pH levels. Corticosterone did not affect insulin binding in both muscles. However, corticosterone decreased the uptake of 2-deoxy-D-glucose and the rate of glycolysis and glycogenesis in both muscles when the dose was pharmacologic (50 and 100 μg/mL), but not when it was physiologic (0.1 and 1 μg/mL). For glycolysis and glycogenesis, the suppression was greater in the EDL when compared with the soleus. This suppression was seen in both basal and insulin-stimulated conditions. In this in vitro system, where the experimental muscle is not exposed to prior hyperinsulinemia as in the in vivo model, corticosterone, at pharmacologic doses, affects postreceptor events without altering the insulin binding in the skeletal muscle.


2010 ◽  
Vol 299 (2) ◽  
pp. R509-R520 ◽  
Author(s):  
Nima Alamdari ◽  
Ira J. Smith ◽  
Zaira Aversa ◽  
Per-Olof Hasselgren

Muscle wasting during sepsis is in part regulated by glucocorticoids. In recent studies, treatment of cultured muscle cells in vitro with dexamethasone upregulated expression and activity of p300, a histone acetyl transferase (HAT), and reduced expression and activity of the histone deacetylases-3 (HDAC3) and -6, changes that favor hyperacetylation. Here, we tested the hypothesis that sepsis and glucocorticoids regulate p300 and HDAC3 and -6 in skeletal muscle in vivo. Because sepsis-induced metabolic changes are particularly pronounced in white, fast-twitch skeletal muscle, most experiments were performed in extensor digitorum longus muscles. Sepsis in rats upregulated p300 mRNA and protein levels, stimulated HAT activity, and reduced HDAC6 expression and HDAC activity. The sepsis-induced changes in p300 and HDAC expression were prevented by the glucocorticoid receptor antagonist RU38486. Treatment of rats with dexamethasone increased expression of p300 and HAT activity, reduced expression of HDAC3 and -6, and inhibited HDAC activity. Finally, treatment with the HDAC inhibitor trichostatin A resulted in increased muscle proteolysis and expression of the ubiquitin ligase atrogin-1. Taken together, our results suggest for the first time that sepsis-induced muscle wasting may be regulated by glucocorticoid-dependent hyperacetylation caused by increased p300 and reduced HDAC expression and activity. The recent development of pharmacological HDAC activators may provide a novel avenue to prevent and treat muscle wasting in sepsis and other catabolic conditions.


Leonardo ◽  
2015 ◽  
Vol 48 (3) ◽  
pp. 270-271
Author(s):  
Miranda D. Grounds

The contraction of specialized skeletal muscle cells results in classic movements of bones and other parts of the body that are vital for life. There is exquisite control over the movement of diverse types of muscles. This paper indicates the way in which skeletal muscles (myofibres) are formed; then factors that contribute to generating the movement are outlined: these include the nerve, sarcomeres, cytoskeleton, cell membrane and the extracellular matrix. The factors controlling the movement of mature myofibres in 3-dimensional tissues in vivo are vastly more complex than for tissue cultured immature muscle cells in an artificial in vitro environment.


2002 ◽  
Vol 283 (4) ◽  
pp. C1163-C1170 ◽  
Author(s):  
Henning Bundgaard ◽  
Keld Kjeldsen

Muscular K uptake depends on skeletal muscle Na-K-ATPase concentration and activity. Reduced K uptake is observed in vitro in K-depleted rats. We evaluated skeletal muscle K clearance capacity in vivo in rats K depleted for 14 days. [3H]ouabain binding, α1 and α2 Na-K-ATPase isoform abundance, and K, Na, and Mg content were measured in skeletal muscles. Skeletal muscle K, Na, and Mg and plasma K were measured in relation to intravenous KCl infusion that continued until animals died, i.e., maximum KCl dose was administered. In soleus, extensor digitorum longus (EDL), and gastrocnemius muscles K depletion significantly reduced K content by 18%, 15%, and 19%, [3H]ouabain binding by 36%, 41%, and 68%, and α2 isoform abundance by 34%, 44%, and 70%, respectively. No significant change was observed in α1 isoform abundance. In EDL and gastrocnemius muscles K depletion significantly increased Na (48% and 59%) and Mg (10% and 17%) content, but only tendencies to increase were observed in soleus muscle. K-depleted rats tolerated up to a fourfold higher KCl dose. This was associated with a reduced rate of increase in plasma K and increases in soleus, EDL, and gastrocnemius muscle K of 56%, 42%, and 41%, respectively, but only tendencies to increase in controls. However, whereas K uptake was highest in K-depleted animals, the K uptake rate was highest in controls. In vivo K depletion is associated with markedly increased K tolerance and K clearance despite significantly reduced skeletal muscle Na-K-ATPase concentration. The concern of an increased risk for K intoxication during K repletion seems unwarranted.


1995 ◽  
Vol 305 (2) ◽  
pp. 465-470 ◽  
Author(s):  
J F Hocquette ◽  
F Bornes ◽  
M Balage ◽  
P Ferre ◽  
J Grizard ◽  
...  

It is well accepted that skeletal muscle is a major glucose-utilizing tissue and that insulin is able to stimulate in vivo glucose utilization in ruminants as in monogastrics. In order to determine precisely how glucose uptake is controlled in various ruminant muscles, particularly by insulin, this study was designed to investigate in vitro glucose transport and insulin-regulatable glucose-transporter protein (GLUT4) in muscle from calf and goat. Our data demonstrate that glucose transport is the rate-limiting step for glucose uptake in bovine fibre strips, as in rat muscle. Insulin increases the rate of in vitro glucose transport in bovine muscle, but to a lower extent than in rat muscle. A GLUT4-like protein was detected by immunoblot assay in all insulin-responsive tissues from calf and goat (heart, skeletal muscle, adipose tissue) but not in liver, brain, erythrocytes and intestine. Unlike the rat, bovine and goat GLUT4 content is higher in glycolytic and oxido-glycolytic muscles than in oxidative muscles. In conclusion, using both a functional test (insulin stimulation of glucose transport) and an immunological approach, this study demonstrates that ruminant muscles express GLUT4 protein. Our data also suggest that, in ruminants, glucose is the main energy-yielding substrate for glycolytic but not for oxidative muscles, and that insulin responsiveness may be lower in oxidative than in other skeletal muscles.


1985 ◽  
Vol 68 (6) ◽  
pp. 693-700 ◽  
Author(s):  
Finbarr C. Martin ◽  
Timothy J. Peters

1. Muscle protein breakdown in vivo has been studied by measurements of urinary 3-methylhistidine/creatinine ratios. No differences were found between control subjects and chronic alcoholics either with or without proximal muscle wasting or cirrhosis. 2. Calculation of muscle turnover rates, with the correction of Afting et al. (1981, Biochemical Journal, 200, 449-452) for non-skeletal muscle contributions of 3-methylhistidine and creatinine, showed lower values for alcoholics compared with controls. 3. Tissue activities of a neutral protease, assayed by a novel, rapid and sensitive fluorimetric method, were similar in patients and controls. The activity did not vary with severity of atrophy or the presence of cirrhosis. 4. No evidence was therefore obtained to suggest that alcoholic myopathy is due to increased muscle breakdown.


2012 ◽  
Vol 303 (3) ◽  
pp. E410-E421 ◽  
Author(s):  
Andrea Bonetto ◽  
Tufan Aydogdu ◽  
Xiaoling Jin ◽  
Zongxiu Zhang ◽  
Rui Zhan ◽  
...  

Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C2C12 myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.


Sign in / Sign up

Export Citation Format

Share Document