scholarly journals Decrease in generation of reactive oxygen species by neutrophils from patients with infectious mononucleosis: role of suppressor T lymphocytes

Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 994-999
Author(s):  
Y Niwa ◽  
T Sakane ◽  
Y Miyachi ◽  
T Kanoh ◽  
K Somiya

We assessed the generation of reactive oxygen species (ROS: O2-, H2O2, OH . , chemiluminescence) by neutrophils and monocytes from six patients with infectious mononucleosis, ten patients with other viral diseases, and ten normal controls. Neutrophils from infectious mononucleosis patients showed markedly decreased generation of all reactive oxygen species, compared with the two control groups; this abnormality persisted for four to eight weeks after disease onset. Monocytes from these patients generated normal levels of ROS. Normal neutrophils incubated with T lymphocytes from infectious mononucleosis patients generated significantly less of each ROS than did those incubated with T cells from either control group. T cell-mediated suppression of ROS generation required both OKT4+ cells from infectious mononucleosis patients and OKT8+ cells from either patients or normals. We conclude that the generation of reaction oxygen species in neutrophils is suppressed in patients with infectious mononucleosis, at least in part, by interacting subsets of T lymphocytes.

Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 994-999 ◽  
Author(s):  
Y Niwa ◽  
T Sakane ◽  
Y Miyachi ◽  
T Kanoh ◽  
K Somiya

Abstract We assessed the generation of reactive oxygen species (ROS: O2-, H2O2, OH . , chemiluminescence) by neutrophils and monocytes from six patients with infectious mononucleosis, ten patients with other viral diseases, and ten normal controls. Neutrophils from infectious mononucleosis patients showed markedly decreased generation of all reactive oxygen species, compared with the two control groups; this abnormality persisted for four to eight weeks after disease onset. Monocytes from these patients generated normal levels of ROS. Normal neutrophils incubated with T lymphocytes from infectious mononucleosis patients generated significantly less of each ROS than did those incubated with T cells from either control group. T cell-mediated suppression of ROS generation required both OKT4+ cells from infectious mononucleosis patients and OKT8+ cells from either patients or normals. We conclude that the generation of reaction oxygen species in neutrophils is suppressed in patients with infectious mononucleosis, at least in part, by interacting subsets of T lymphocytes.


2021 ◽  
Vol 8 (32) ◽  
pp. 3023-3027
Author(s):  
Namrata Shrivastava ◽  
Vaibhav Shrivastava ◽  
Manish Pandey

BACKGROUND Infertility is defined as the inability to conceive after at 1 year of regular unprotected intercourse. Male contributes to almost half of infertility cases and in almost 30 % of cases, no definite aetiology is identified, and hence, male infertility is labelled idiopathic in these cases. Oxidative energy production mechanisms are almost always accompanied by reactive oxygen species (ROS), generation whose too much concentrations can lead to extensive protein damage and cytoskeletal modifications and inhibit cellular mechanisms. A number of laboratory techniques have been developed to evaluate oxidative stress by measuring ROS level in the semen. In recent times antioxidant supplements have been proposed as useful agents to increase the scavenging capacity of seminal plasma, controversy still surrounds their actual clinical utility. METHODS 34 male patients were included in this study. Reactive oxygen species detection was done by Flowcytometry using dichloroflurosecindiacetate (DCFH-DA). RESULTS The ROS in the patient group was found to be significantly higher 29.821 (5.6300 than the control group 22.162 (1.6331 having p value < 0.001). The ROS (29.821 ± 5.6300) was found to be significantly reduced after 3 months of antioxidant therapy which got reduced to 19.893 ± 4.2299 respectively. CONCLUSIONS Our study demonstrates that infertile men have significantly higher level of ROS (as measured by flowcytometry) & lower sperm count (oligospermia), decreased progressive & total motility and increased immotile sperms as compared to healthy fertile men. This study further proves that antioxidant therapy based on a combination of carnitine, zinc, coq10, lycopene and vitamin C & E for 3 months is associated with a decrease of ROS as measured by flowcytometry & a variable degree of improvement in above mentioned semen parameters. KEYWORDS Reactive Oxygen Species, Male Infertility


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii17-ii17
Author(s):  
Shashank Hambarde ◽  
Martyn Sharpe ◽  
David Baskin ◽  
Santosh Helekar

Abstract Noninvasive cancer therapy with minimal side effects would be ideal for improving patient outcome in the clinic. We have developed a novel therapy using strong rotating magnets mounted on a helmet. They generate oscillating magnetic fields (OMF) that penetrate through the skull and cover the entire brain. We have demonstrated that OMF can effectively kill patient derived glioblastoma (GBM) cells in cell culture without having cytotoxic effects on cortical neurons and normal human astrocytes (NHA). Exposure of GBM cells to OMF reduced the cell viability by 33% in comparison to sham-treated cells (p&lt; 0.001), while not affecting NHA cell viability. Time lapse video-microscopy for 16 h after OMF exposure showed a marked elevation of mitochondrial reactive oxygen species (ROS), and rapid apoptosis of GBM cells due to activation of caspase 3. Addition of a potent antioxidant vitamin E analog Trolox effectively blocked OMF-induced GBM cell death. Furthermore, OMF significantly potentiated the cytotoxic effect of the pro-oxidant Benzylamine. The results of our studies demonstrate that OMF-induced cell death is mediated by ROS generation. These results demonstrate a potent oncolytic effect on GBM cells that is novel and unrelated to any previously described therapy, including a very different mechanism of action and different technology compared to Optune therapy. The effect is very powerful, and unlike Optune, can be seen within hours after initiation of treatment. We believe that this technology holds great promise for new, effective and nontoxic treatment of glioblastoma.


Author(s):  
Arnab Banerjee ◽  
Debasmita Das ◽  
Rajarshi Paul ◽  
Sandipan Roy ◽  
Ankita Bhattacharjee ◽  
...  

AbstractBackgroundIn the present era, obesity is increasing rapidly, and high dietary intake of lipid could be a noteworthy risk factor for the occasion of obesity, as well as nonalcoholic fatty liver disease, which is the independent risk factor for type 2 diabetes and cardiovascular disease. For a long time, high-lipid diet (HLD) in “fast food” is turning into part of our everyday life. So, we were interested in fulfilling the paucity of studies by means of preliminary evaluation of these three alternative doses of HLD on a rat model and elucidating the possible mechanism of these effects and divulging the most alarming dose.MethodsThirty-two rats were taken, and of these, 24 were fed with HLD in three distinctive compositions of edible coconut oil and vanaspati ghee in a ratio of 2:3, 3:2 and 1:1 (n = 8), orally through gavage at a dose of 10 mL/kg body weight for a period of 28 days, whereas the other eight were selected to comprise the control group.ResultsAfter completion of the experiment, followed by analysis of data it was revealed that hyperlipidemia with increased liver and cardiac marker enzymes, are associated with hepatocellular injury and cardiac damage. The data also supported increased proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). As oxidative stress parameter increased in both liver and heart, there is also an increased in TNF-α due to an increased expression of inducible nitric oxide (NO) synthase, which led to a high production of NO. Moreover, HLD treatment explicitly weakens reasonability of hepatocytes and cardiomyocytes conceivably through G0/G1 or S stage capture or perhaps by means of enlistment of sub-G0/G1 DNA fragmentation and a sign of apoptosis.ConclusionsBased on the outcomes, it tends to be inferred that consequences of the present examination uncovered HLD in combination of 2:3 applies most encouraging systemic damage by reactive oxygen species generation and hyperlipidemia and necroapoptosis of the liver and heart. Hence, outcome of this study may help to formulate health care strategy and warns about the food habit in universal population regarding the use of hydrogenated and saturated fats (vanaspati ghee) in diet.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
Meera Ramanujam ◽  
Rengarajulu Puvanakrishnan

Neutrophil infiltration plays a major role in the pathogenesis of myocardial injury. Oxidative injury is suggested to be a central mechanism of the cellular damage after acute myocardial infarction. This study is pertained to the prognostic role of a tetrapeptide derivative PEP1261 (BOC-Lys(BOC)-Arg-Asp-Ser(tBu)-OtBU), a peptide sequence (39–42) of lactoferrin, studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation, lysosomal enzymes release, and enhanced expression of C proteins. The groundwork experimentation was concerned with the isolation of neutrophils from the normal and acute myocardial infarct rats to find out the efficacy of PEP1261 in the presence of a powerful neutrophil stimulant, phorbol 12-myristate 13 acetate (PMA). Stimulation of neutrophils with PMA resulted in an oxidative burst of superoxide anion and enhanced release of lysosomal enzymes and expression of complement proteins. The present study further demonstrated that the free radicals increase the complement factors in the neutrophils confirming the role of ROS. PEP1261 treatment significantly reduced the levels of superoxide anion and inhibited the release of lysosomal enzymes in the stimulated control and infarct rat neutrophils. This study demonstrated that PEP1261 significantly inhibited the effect on the ROS generation as well as the mRNA synthesis and expression of the complement factors in neutrophils isolated from infarct heart.


2021 ◽  
Vol 22 (3) ◽  
pp. 1106
Author(s):  
Rayan Bou-Fakhredin ◽  
Batoul Dia ◽  
Hilda E. Ghadieh ◽  
Stefano Rivella ◽  
Maria Domenica Cappellini ◽  
...  

Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for β-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


2005 ◽  
Vol 389 (2) ◽  
pp. 527-539 ◽  
Author(s):  
Shasi V. Kalivendi ◽  
Eugene A. Konorev ◽  
Sonya Cunningham ◽  
Sravan K. Vanamala ◽  
Eugene H. Kaji ◽  
...  

Doxorubicin (DOX), a widely used antitumour drug, causes dose-dependent cardiotoxicity. Cardiac mitochondria represent a critical target organelle of toxicity during DOX chemotherapy. Proposed mechanisms include generation of ROS (reactive oxygen species) and disturbances in mitochondrial calcium homoeostasis. In the present study, we probed the mechanistic link between mitochondrial ROS and calcium in the embryonic rat heart-derived H9c2 cell line and in adult rat cardiomyocytes. The results show that DOX stimulates calcium/calcineurin-dependent activation of the transcription factor NFAT (nuclear factor of activated T-lymphocytes). Pre-treatment of cells with an intracellular calcium chelator abrogated DOX-induced nuclear NFAT translocation, Fas L (Fas ligand) expression and caspase activation, as did pre-treatment of cells with a mitochondria-targeted antioxidant, Mito-Q (a mitochondria-targeted antioxidant consisting of a mixture of mitoquinol and mitoquinone), or with adenoviral-over-expressed antioxidant enzymes. Treatment with GPx-1 (glutathione peroxidase 1), MnSOD (manganese superoxide dismutase) or a peptide inhibitor of NFAT also inhibited DOX-induced nuclear NFAT translocation. Pre-treatment of cells with a Fas L neutralizing antibody abrogated DOX-induced caspase-8- and -3-like activities during the initial stages of apoptosis. We conclude that mitochondria-derived ROS and calcium play a key role in stimulating DOX-induced ‘intrinsic and extrinsic forms’ of apoptosis in cardiac cells with Fas L expression via the NFAT signalling mechanism. Implications of ROS- and calcium-dependent NFAT signalling in DOX-induced apoptosis are discussed.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3372 ◽  
Author(s):  
Yan-Hui Shen ◽  
Li-Ying Wang ◽  
Bao-Bao Zhang ◽  
Qi-Ming Hu ◽  
Pu Wang ◽  
...  

Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V–FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.


Sign in / Sign up

Export Citation Format

Share Document