scholarly journals Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy

2006 ◽  
Vol 396 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Annarita Graziani ◽  
Christian Rosker ◽  
Sepp D. Kohlwein ◽  
Michael X. Zhu ◽  
Christoph Romanin ◽  
...  

TRPC3 (canonical transient receptor potential protein 3) has been suggested to be a component of cation channel complexes that are targeted to cholesterol-rich lipid membrane microdomains. In the present study, we investigated the potential role of membrane cholesterol as a regulator of cellular TRPC3 conductances. Functional experiments demonstrated that cholesterol loading activates a non-selective cation conductance and a Ca2+ entry pathway in TRPC3-overexpressing cells but not in wild-type HEK-293 (human embryonic kidney 293) cells. The cholesterol-induced membrane conductance exhibited a current-to-voltage relationship similar to that observed upon PLC (phospholipase C)-dependent activation of TRPC3 channels. Nonetheless, the cholesterol-activated conductance lacked negative modulation by extracellular Ca2+, a typical feature of agonist-activated TRPC3 currents. Involvement of TRPC3 in the cholesterol-dependent membrane conductance was further corroborated by a novel dominant-negative strategy for selective blockade of TRPC3 channel activity. Expression of a TRPC3 mutant, which contained a haemagglutinin epitope tag in the second extracellular loop, conferred antibody sensitivity to both the classical PLC-activated as well as the cholesterol-activated conductance in TRPC3-expressing cells. Moreover, cholesterol loading as well as PLC stimulation was found to increase surface expression of TRPC3. Promotion of TRPC3 membrane expression by cholesterol was persistent over 30 min, while PLC-mediated enhancement of plasma membrane expression of TRPC3 was transient in nature. We suggest the cholesterol content of the plasma membrane as a determinant of cellular TRPC3 activity and provide evidence for cholesterol dependence of TRPC3 surface expression.

2021 ◽  
Vol 11 ◽  
Author(s):  
Ádám Horváth ◽  
Maja Payrits ◽  
Anita Steib ◽  
Boglárka Kántás ◽  
Tünde Biró-Süt ◽  
...  

Transient Receptor Potential (TRP) Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and integratively regulate nociceptor and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin and gangliosides. We earlier showed that lipid raft disruption inhibits TRPV1 and TRPA1 functions in primary sensory neuronal cultures. Here we investigated the effects of sphingomyelinase (SMase) cleaving membrane sphingomyelin and myriocin (Myr) prohibiting sphingolipid synthesis in mouse pain models of different mechanisms. SMase (50 mU) or Myr (1 mM) pretreatment significantly decreased TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements by 37 and 41%, respectively. Intraplantar pretreatment by both compounds significantly diminished TRPV1 stimulation (resiniferatoxin)-evoked thermal allodynia developing mainly by peripheral sensitization. SMase (50 mU) also decreased mechanical hyperalgesia related to both peripheral and central sensitizations. SMase (50 mU) significantly reduced TRPA1 activation (formalin)-induced acute nocifensive behaviors by 64% in the second, neurogenic inflammatory phase. Myr, but not SMase altered the plasma membrane polarity related to the cholesterol composition as shown by fluorescence spectroscopy. These are the first in vivo results showing that sphingolipids play a key role in lipid raft integrity around nociceptive TRP channels, their activation and pain sensation. It is concluded that local SMase administration might open novel perspective for analgesic therapy.


2011 ◽  
Vol 439 (1) ◽  
pp. 129-139 ◽  
Author(s):  
Tyler Mandt ◽  
Yumei Song ◽  
Andrew M. Scharenberg ◽  
Jaya Sahni

SLC41A1 (solute carrier family 41, member A1) is a recently described vertebrate member of the MgtE family of Mg2+ transporters. Although MgtE transporters are found in both prokaryotic and eukaryotic organisms, and are highly conserved, little is known about the regulation of their Mg2+ transport function. In the present study, we have shown that endogenous SLC41A1 transporter expression is post-transcriptionally regulated by extracellular Mg2+ in TRPM7 (transient receptor potential cation channel, subfamily M, member 7)-deficient cells, suggesting that SLC41A1 transporters underlie a novel plasma membrane Mg2+ transport function. Consistent with this conclusion, structure–function analyses of heterologous SLC41A1 transporter expression demonstrate that SLC41A1 transporters exhibit the same plasma membrane orientation as homologous bacterial MgtE proteins, are capable of complementing growth of TRPM7-deficient cells only when the Mg2+ transporting pore is intact, and require an N-terminal cytoplasmic domain for Mg2+-dependent regulation of lysosomal degradation and surface expression. Taken together, our results indicate that SLC41A1 proteins are a central component of vertebrate Mg2+ transport systems, and that their Mg2+ transport function is regulated primarily through an endosomal recycling mechanism involving the SLC41A1 N-terminal cytoplasmic domain.


2007 ◽  
Vol 35 (1) ◽  
pp. 96-100 ◽  
Author(s):  
I.S. Ambudkar

The TRPC (transient receptor potential canonical) proteins are activated in response to agonist-stimulated PIP2 (phosphatidylinositol 4,5-bisphosphate) hydrolysis and have been suggested as candidate components of the elusive SOC (store-operated calcium channel). TRPC1 is currently the strongest candidate component of SOC. Endogenous TRPC1 has been shown to contribute to SOCE (store-operated calcium entry) in several different cell types. However, the mechanisms involved in the regulation of TRPC1 and its exact physiological function have yet to be established. Studies from our laboratory and several others have demonstrated that TRPC1 is assembled in a signalling complex with key calcium signalling proteins in functionally specific plasma membrane microdomains. Furthermore, critical interactions between TRPC1 monomers as well as interactions between TRPC1 and other proteins determine the surface expression and function of TRPC1-containing channels. Recent studies have revealed novel regulators of TRPC1-containing SOCs and have demonstrated a common molecular basis for the regulation of CRAC (calcium-release-activated calcium) and SOC channels. In the present paper, we will revisit the role of TRPC1 in SOCE and discuss how studies with TRPC1 provide an experimental basis for validating the mechanism of SOCE.


2006 ◽  
Vol 26 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Stan F. J. van de Graaf ◽  
Qing Chang ◽  
Arjen R. Mensenkamp ◽  
Joost G. J. Hoenderop ◽  
René J. M. Bindels

ABSTRACT TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.


2010 ◽  
Vol 299 (3) ◽  
pp. H624-H633 ◽  
Author(s):  
Alessandra Zulian ◽  
Sergey G. Baryshnikov ◽  
Cristina I. Linde ◽  
John M. Hamlyn ◽  
Patrizia Ferrari ◽  
...  

The Milan hypertensive strain (MHS) of rats is a model for hypertension in humans. Inherited defects in renal function have been well studied in MHS rats, but the mechanisms that underlie the elevated vascular resistance are unclear. Altered Ca2+ signaling plays a key role in the vascular dysfunction associated with arterial hypertension. Here we compared Ca2+ signaling in mesenteric artery smooth muscle cells from MHS rats and its normotensive counterpart (MNS). Systolic blood pressure was higher in MHS than in MNS rats (144 ± 2 vs. 113 ± 1 mmHg, P < 0.05). Resting cytosolic free Ca2+ concentration (measured with fura-2) and ATP-induced Ca2+ transients were augmented in freshly dissociated arterial myocytes from MHS rats. Ba2+ entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl- sn-glycerol (a measure of receptor-operated channel activity) was much greater in MHS than MNS arterial myocytes. This correlated with a threefold upregulation of transient receptor potential canonical 6 (TRPC6) protein. TRPC3, the other component of receptor-operated channels, was marginally, but not significantly, upregulated. The expression of TRPC1/5, components of store-operated channels, was not altered in MHS mesenteric artery smooth muscle. Immunoblots also revealed that the Na+/Ca2+ exchanger-1 (NCX1) was greatly upregulated in MHS mesenteric artery (by ∼13-fold), whereas the expression of plasma membrane Ca2+-ATPase was not altered. Ca2+ entry via the reverse mode of NCX1 evoked by the removal of extracellular Na+ induced a rapid increase in cytosolic free Ca2+ concentration that was significantly larger in MHS arterial myocytes. The expression of α1/α2 Na+ pumps in MHS mesenteric arteries was not changed. Immunocytochemical observations showed that NCX1 and TRPC6 are clustered in plasma membrane microdomains adjacent to the underlying sarcoplasmic reticulum. In summary, MHS arteries exhibit upregulated TRPC6 and NCX1 and augmented Ca2+ signaling. We suggest that the increased Ca2+ signaling contributes to the enhanced vasoconstriction and elevated blood pressure in MHS rats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irina Starostina ◽  
Yoon-Kwan Jang ◽  
Heon-Su Kim ◽  
Jung-Soo Suh ◽  
Sang-Hyun Ahn ◽  
...  

AbstractTransient receptor potential subfamily M member 7 (TRPM7), a mechanosensitive Ca2+ channel, plays a crucial role in intracellular Ca2+ homeostasis. However, it is currently unclear how cell mechanical cues control TRPM7 activity and its associated Ca2+ influx at plasma membrane microdomains. Using two different types of Ca2+ biosensors (Lyn-D3cpv and Kras-D3cpv) based on fluorescence resonance energy transfer, we investigate how Ca2+ influx generated by the TRPM7-specific agonist naltriben is mediated at the detergent-resistant membrane (DRM) and non-DRM regions. This study reveals that TRPM7-induced Ca2+ influx mainly occurs at the DRM, and chemically induced mechanical perturbations in the cell mechanosensitive apparatus substantially reduce Ca2+ influx through TRPM7, preferably located at the DRM. Such perturbations include the disintegration of lipid rafts, microtubules, or actomyosin filaments; the alteration of actomyosin contractility; and the inhibition of focal adhesion and Src kinases. These results suggest that the mechanical membrane environment contributes to the TRPM7 function and activity. Thus, this study provides a fundamental understanding of how the mechanical aspects of the cell membrane regulate the function of mechanosensitive channels.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


2015 ◽  
Vol 309 (9) ◽  
pp. G759-G767 ◽  
Author(s):  
Hee Kyoung Chung ◽  
Navneeta Rathor ◽  
Shelley R. Wang ◽  
Jian-Ying Wang ◽  
Jaladanki N. Rao

Early mucosal restitution occurs as a consequence of epithelial cell migration to resealing of superficial wounds after injury. Our previous studies show that canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOC) in intestinal epithelial cells (IECs) and plays an important role in early epithelial restitution by increasing Ca2+ influx. Here we further reported that RhoA, a small GTP-binding protein, interacts with and regulates TRPC1, thus enhancing SOC-mediated Ca2+ entry (SOCE) and epithelial restitution after wounding. RhoA physically associated with TRPC1 and formed the RhoA/TRPC1 complexes, and this interaction increased in stable TRPC1-transfected IEC-6 cells (IEC-TRPC1). Inactivation of RhoA by treating IEC-TRPC1 cells with exoenzyme C3 transferase (C3) or ectopic expression of dominant negative RhoA (DNMRhoA) reduced RhoA/TRPC1 complexes and inhibited Ca2+ influx after store depletion, which was paralleled by an inhibition of cell migration over the wounded area. In contrast, ectopic expression of wild-type (WT)-RhoA increased the levels of RhoA/TRPC1 complexes, induced Ca2+ influx through activation of SOCE, and promoted cell migration after wounding. TRPC1 silencing by transfecting stable WT RhoA-transfected cells with siRNA targeting TRPC1 (siTRPC1) reduced SOCE and repressed epithelial restitution. Moreover, ectopic overexpression of WT-RhoA in polyamine-deficient cells rescued the inhibition of Ca2+ influx and cell migration induced by polyamine depletion. These findings indicate that RhoA interacts with and activates TRPC1 and thus stimulates rapid epithelial restitution after injury by inducing Ca2+ signaling.


2002 ◽  
Vol 364 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Alessandra GAMBERUCCI ◽  
Emanuele GIURISATO ◽  
Paola PIZZO ◽  
Maristella TASSI ◽  
Roberta GIUNTI ◽  
...  

In Jurkat and human peripheral blood T-lymphocytes, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analogue of diacylglycerol, activated the influx of Ca2+, Ba2+ and Sr2+. OAG also caused plasma-membrane depolarization in Ca2+-free media that was recovered by the addition of bivalent cation, indicating the activation of Na+ influx. OAG-induced cation influx was (i) mimicked by the natural dacylglycerol 1-stearoyl-2-arachidonyl-sn-glycerol, (ii) not blocked by inhibiting protein kinase C or in the absence of phopholipase C activity and (iii) blocked by La3+ and Gd3+. Differently from OAG, both thapsigargin and phytohaemagglutinin activated a potent influx of Ca2+, but little influx of Ba2+ and Sr2+. Moreover, the influx of Ca2+ activated by thapsigargin and that activated by OAG were additive. Furthermore, several drugs (i.e. econazole, SKF96365, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, 2-aminoethoxy diphenylborate and calyculin-A), while inhibiting the influx of Ca2+ induced by both thapsigargin and phytohaemagglutinin, did not affect OAG-stimulated cation influx. Transient receptor potential (TRP) 3 and TRP6 proteins have been shown previously to be activated by diacylglycerol when expressed heterologously in animal cells [Hofmann, Obukhov, Schaefer, Harteneck, Gudermann and Schultz (1999) Nature (London) 397, 259–263]. In both Jurkat and peripheral blood T-lymphocytes, mRNA encoding TRP proteins 1, 3, 4 and 6 was detected by reverse transcriptase PCR, and the TRP6 protein was detected by Western blotting in a purified plasma-membrane fraction. We conclude that T-cells express a diacylglycerol-activated cation channel, unrelated to the channel involved in capacitative Ca2+ entry, and associated with the expression of TRP6 protein.


2015 ◽  
Vol 309 (7) ◽  
pp. F604-F616 ◽  
Author(s):  
R. Todd Alexander ◽  
Megan R. Beggs ◽  
Reza Zamani ◽  
Niels Marcussen ◽  
Sebastian Frische ◽  
...  

Plasma membrane Ca2+-ATPases (PMCAs) participate in epithelial Ca2+ transport and intracellular Ca2+ signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca2+ channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca2+ flux and investigated the localization and regulation of Pmca4 in Ca2+-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca2+ channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na+-Cl− cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca2+ balance, pointing to a housekeeping function of the pump in Ca2+-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca2+-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca2+ transport.


Sign in / Sign up

Export Citation Format

Share Document