scholarly journals Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis

2006 ◽  
Vol 394 (1) ◽  
pp. 237-242 ◽  
Author(s):  
Motohiro Tani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

In the yeast Saccharomyces cerevisiae, sphingolipids are essential for cell growth. Inactivation of sphingolipid biosynthesis, such as by disrupting the serine palmitoyltransferase gene (LCB2), is lethal, but cells can be rescued by supplying an exogenous LCB (long-chain base) like PHS (phytosphingosine) or DHS (dihydrosphingosine). In the present study, supplying SPH (sphingosine), an unnatural LCB for yeast, similarly rescued the Δlcb2 cells, but only when SPH 1-phosphate production was inhibited by deleting the LCB kinase gene LCB4. Exogenously added SPH was adequately converted into phosphoinositol-containing complex sphingolipids. Interestingly, cells carrying SPH-based sphingolipids exhibited a defect in the association of Pma1p with Triton X-100-insoluble membrane fractions, and displayed sensitivities to both Ca2+ and hygromycin B. These results suggest that the SPH-based sphingolipids in these cells have properties that differ from those of the PHS- or DHS-based sphingolipids in regard to lipid microdomain formation, leading to abnormal sensitivities towards certain environmental stresses. The present paper is the first report showing that in sphingolipid-deficient S. cerevisiae, the requirement for LCB can be fulfilled by exogenous SPH, although this supplement results in failure of lipid microdomain formation.

1989 ◽  
Vol 9 (2) ◽  
pp. 442-451
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


1995 ◽  
Vol 42 (2) ◽  
pp. 269-274 ◽  
Author(s):  
U Lenart ◽  
J Haplova ◽  
P Magdolen ◽  
V Farkas ◽  
G Palamarczyk

The membrane-bound sterolglucoside synthase from the yeast Saccharomyces cerevisiae has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di-125I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDP glucose, which is a substrate for this enzyme. Upon photolysis the 125I-labeled probe was shown to link covalently to the 66 kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlates with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast.


2001 ◽  
Vol 29 (6) ◽  
pp. 831-835 ◽  
Author(s):  
S. C. Linn ◽  
H. S. Kim ◽  
E. M. Keane ◽  
L. M. Andras ◽  
E. Wang ◽  
...  

Complex sphingolipids are ‘built’ on highly bio-active backbones (sphingoid bases and ceramides) that can cause cell death when the amounts are elevated by turnover of complex sphingolipids, disruption of normal sphingolipid metabolism, or over-induction of sphingolipid biosynthesis de novo. Under normal conditions, it appears that the bioactive intermediates of this pathway (3-keto-sphinganine, sphinganine and ceramides) are kept at relatively low levels. Both the intrinsic activity of serine palmitoyltransferase (SPT) and the availability of its substrates (especially palmitoyl-CoA) can have toxic consequences for cells by increasing the production of cytotoxic intermediates. Recent work has also revealed that diverse agonists and stresses (cytokines, UV light, glucocorticoids, heat shock and toxic compounds) modulate SPT activity by induction of SPTLC2 gene transcription and/or post-translational modification. Mutation of the SPTLC1 component of SPT has also been shown to cause hereditary sensory neuropathy type I, possibly via aberrant oversynthesis of sphingolipids. Another key step of the pathway is the acylation of sphinganine (and sphingosine in the recycling pathway) by ceramide synthase, and up-regulation of this enzyme (or its inhibition to cause accumulation of sphinganine) can also be toxic for cells. Since it appears that most, if not all, tissues synthesize sphingolipids de novo, it may not be surprising that disruption of this pathway has been implicated in a wide spectrum of disease.


2013 ◽  
Vol 24 (6) ◽  
pp. 870-881 ◽  
Author(s):  
Mitsugu Shimobayashi ◽  
Wolfgang Oppliger ◽  
Suzette Moes ◽  
Paul Jenö ◽  
Michael N. Hall

The evolutionarily conserved Orm1 and Orm2 proteins mediate sphingolipid homeostasis. However, the homologous Orm proteins and the signaling pathways modulating their phosphorylation and function are incompletely characterized. Here we demonstrate that inhibition of nutrient-sensitive target of rapamycin complex 1 (TORC1) stimulates Orm phosphorylation and synthesis of complex sphingolipids in Saccharomyces cerevisiae. TORC1 inhibition activates the kinase Npr1 that directly phosphorylates and activates the Orm proteins. Npr1-phosphorylated Orm1 and Orm2 stimulate de novo synthesis of complex sphingolipids downstream of serine palmitoyltransferase. Complex sphingolipids in turn stimulate plasma membrane localization and activity of the nutrient scavenging general amino acid permease 1. Thus activation of Orm and complex sphingolipid synthesis upon TORC1 inhibition is a physiological response to starvation.


1998 ◽  
Vol 45 (2) ◽  
pp. 385-392
Author(s):  
V Chigorno ◽  
M Valsecchi ◽  
S Sonnino

Preparation of radioactive GM3 species containing isotopically labeled C18 sphingosine or C20 sphingosine is reported and their use for studying some aspects of the sphingolipid biosynthesis in cells is discussed. Human fibroblasts in culture that have only C18 sphingolipids and GM3 as the major gangliosides, were fed with the two radioactive GM3 species. The radioactive gangliosides were taken up by the cells and metabolized. The analyses of the radioactivity metabolic fate, in this model provides the following information. i--About 70-80% of the total catabolic sphingosine is re-cycled for biosynthesis of complex sphingolipids. ii--A small amount of the catabolic C20 sphingosine was re-cycled for biosynthesis of C20 sphingolipids, thus yielding complex lipids that are not naturally present in fibroblast cells. iii--A regulatory step in the biosynthesis of sphingolipid species differring long chain base content, C18 or C20 sphingosine, is in some way involved in the first steps of sphingolipid biosynthesis, and thus plays a decisive role in the availability of the long chain bases.


1990 ◽  
Vol 10 (5) ◽  
pp. 2176-2181
Author(s):  
R C Dickson ◽  
G B Wells ◽  
A Schmidt ◽  
R L Lester

Sphingolipids comprise a large, widespread family of complex eucaryotic-membrane constituents of poorly defined function. The yeast Saccharomyces cerevisiae is particularly suited for studies of sphingolipid function because it contains a small number of sphingolipids and is amenable to molecular genetic analysis. Moreover, it is the only eucaryote in which mutants blocked in sphingolipid biosynthesis have been isolated. Beginning with a nonreverting sphingolipid-defective strain that requires the addition of the long-chain-base component of sphingolipids to the culture medium for growth, we isolated two strains carrying secondary, suppressor mutations that permit survival in the absence of exogenous long-chain base. Remarkably, the suppressor strains made little if any sphingolipid. A study of how the suppressor gene products compensate for the lack of sphingolipids may reveal the function(s) of these membrane lipids in yeast cells.


1989 ◽  
Vol 9 (2) ◽  
pp. 442-451 ◽  
Author(s):  
M Nishizawa ◽  
R Araki ◽  
Y Teranishi

To clarify carbon source-dependent control of the glycolytic pathway in the yeast Saccharomyces cerevisiae, we have initiated a study of transcriptional regulation of the pyruvate kinase gene (PYK). By deletion analysis of the 5'-noncoding region of the PYK gene, we have identified an upstream activating sequence (UASPYK1) located between 634 and 653 nucleotides upstream of the initiating ATG codon. The promoter activity of the PYK 5'-noncoding region was abolished when the sequence containing the UASPYK1 was deleted from the region. Synthetic UASPYK1 (26mer), in either orientation, was able to restore the transcriptional activity of UAS-depleted mutants when placed upstream of the TATA sequence located at -199 (ATG as +1). While the UASPYK1 was required for basal to intermediate levels of transcriptional activation, a sequence between -714 and -811 was found to be necessary for full activation. On the other hand, a sequence between -344 and -468 was found to be responsible for transcriptional repression of the PYK gene when yeast cells were grown on nonfermentable carbon sources. This upstream repressible sequence also repressed transcription, although to a lesser extent, when glucose was present in the medium. The possible mechanism for carbon source-dependent regulation of PYK expression through these cis-acting regulatory elements is discussed.


Sign in / Sign up

Export Citation Format

Share Document