Diffusible amyloid oligomers trigger systemic amyloidosis in mice

2008 ◽  
Vol 415 (2) ◽  
pp. 207-215 ◽  
Author(s):  
Sivanesan Senthilkumar ◽  
Edwin Chang ◽  
Rajadas Jayakumar

AA (amyloid protein A) amyloidosis in mice is markedly accelerated when the animals are given, in addition to an inflammatory stimulus, an intravenous injection of protein extracted from AA-laden mouse tissue. Previous findings affirm that AA fibrils can enhance the in vivo amyloidogenic process by a nucleation seeding mechanism. Accumulating evidence suggests that globular aggregates rather than fibrils are the toxic entities responsible for cell death. In the present study we report on structural and morphological features of AEF (amyloid-enhancing factor), a compound extracted and partially purified from amyloid-laden spleen. Surprisingly, the chief amyloidogenic material identified in the active AEF was diffusible globular oligomers. This partially purified active extract triggered amyloid deposition in vital organs when injected intravenously into mice. This implies that such a phenomenon could have been inflicted through the nucleation seeding potential of toxic oligomers in association with altered cytokine induction. In the present study we report an apparent relationship between altered cytokine expression and AA accumulation in systemically inflamed tissues. The prevalence of serum AA monomers and proteolytic oligomers in spleen AEF is consistent to suggest that extrahepatic serum AA processing might lead to local accumulation of amyloidogenic proteins at the serum AA production site.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Olanrewaju Ayodeji Durojaye ◽  
Nkwachukwu Oziamara Okoro ◽  
Arome Solomon Odiba

Abstract Background The novel coronavirus SARS-CoV-2 is currently a global threat to health and economies. Therapeutics and vaccines are in rapid development; however, none of these therapeutics are considered as absolute cure, and the potential to mutate makes it necessary to find therapeutics that target a highly conserved regions of the viral structure. Results In this study, we characterized an essential but poorly understood coronavirus accessory X4 protein, a core and stable component of the SARS-CoV family. Sequence analysis shows a conserved ~ 90% identity between the SARS-CoV-2 and previously characterized X4 protein in the database. QMEAN Z score of the model protein shows a value of around 0.5, within the acceptable range 0–1. A MolProbity score of 2.96 was obtained for the model protein and indicates a good quality model. The model has Ramachandran values of φ = − 57o and ψ = − 47o for α-helices and values of φ = − 130o and ψ = + 140o for twisted sheets. Conclusions The protein data obtained from this study provides robust information for further in vitro and in vivo experiment, targeted at devising therapeutics against the virus. Phylogenetic analysis further supports previous evidence that the SARS-CoV-2 is positioned with the SL-CoVZC45, BtRs-BetaCoV/YN2018B and the RS4231 Bat SARS-like corona viruses.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 515-525 ◽  
Author(s):  
Allison P Davis ◽  
Lorraine S Symington

Abstract The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.


2001 ◽  
Vol 12 (5) ◽  
pp. 1199-1213 ◽  
Author(s):  
Gregory G. Oakley ◽  
Lisa I. Loberg ◽  
Jiaqin Yao ◽  
Mary A. Risinger ◽  
Remy L. Yunker ◽  
...  

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4–8 h) to UV radiation (10–30 J/m2). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.


2003 ◽  
Vol 31 (3) ◽  
pp. 716-718 ◽  
Author(s):  
N.G. Housden ◽  
S. Harrison ◽  
S.E. Roberts ◽  
J.A. Beckingham ◽  
M. Graille ◽  
...  

Protein L is a multidomain cell-wall protein isolated from Peptostreptococcus magnus. It belongs to a group of proteins that contain repeated domains that are able to bind to Igs without stimulating an immune response, the most characterized of this group being Protein A (Staphylococcus aureus) and Protein G (Streptococcus). Both of these proteins bind predominantly to the interface of CH2-CH3 heavy chains, while Protein L binds exclusively to the VL domain of the κ-chain. The function of these proteins in vivo is not clear but it is thought that they enable the bacteria to evade the host's immune system. Two binding sites for κ-chain on a single Ig-binding domain from Protein L have recently been reported and we give evidence that one site has a 25–55-fold higher affinity for κ-chain than the second site.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 989-1005 ◽  
Author(s):  
Keiko Umezu ◽  
Neal Sugawara ◽  
Clark Chen ◽  
James E Haber ◽  
Richard D Kolodner

Abstract Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 104 to 105 times increased sensitivity to these agents. Some of the UV- and MMS-sensitive mutants were killed by an HO-induced double-strand break at MAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages.


2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


1990 ◽  
Vol 258 (6) ◽  
pp. L241-L253 ◽  
Author(s):  
A. Chander ◽  
A. B. Fisher

Secretion of lung surfactant is the direct step in release of the lipoprotein-like product, synthesized in lung epithelial type II cells, onto the alveolar surface. Release of surfactant phosphatidylcholine (PC) proceeds via formation of surface pores during exocytosis of lamellar bodies. Surfactant secretion is regulated locally in the lung by changes in ventilation rate, possibly mediated by distension and altered intracellular pH. Secretion is also stimulated by various agents, including agonists for beta-adrenergic, purinoceptors, and vasopressin receptors and is associated with increased cytosolic Ca2+, cellular adenosine 3',5'-cyclic monophosphate, and activation of protein kinases. Limited studies suggest that secretion of surfactant protein A may be regulated by both cAMP-dependent and protein kinase C-dependent pathways. The integration of these various mechanisms for the in vivo regulation of surfactant secretion remains largely unexplored. Future research into the mechanisms involved in lamellar body fusion with the plasma membrane, role of protein phosphorylation, transient changes in cAMP and Ca2+, and coordination between the secretion of phospholipid and protein components of surfactant should enhance our understanding of secretion of surfactant “lipoprotein.”


1997 ◽  
Vol 272 (3) ◽  
pp. L479-L485 ◽  
Author(s):  
M. Ikegami ◽  
T. R. Korfhagen ◽  
M. D. Bruno ◽  
J. A. Whitsett ◽  
A. H. Jobe

In the present study we asked if surfactant metabolism was altered in surfactant protein (SP) A-deficient mice in vivo. Although previous studies in vitro demonstrated that SP-A modulates surfactant secretion and reuptake by type II cells, mice made SP-A deficient by homologous recombination grow and reproduce normally and have normal lung function. Alveolar and lung tissue saturated phophatidylcholine (Sat PC) pools were 50 and 26% larger, respectively, in SP-A(-/-) mice than in SP-A(+/+) mice. Radiolabeled choline and palmitate incorporation into lung Sat PC was similar both in vivo and for lung tissue slices in vitro from SP-A(+/+) and SP-A(-/-) mice. Percent secretion of radiolabeled Sat PC was unchanged from 3 to 15 h, although SP-A(-/-) mice retained more labeled Sat PC in the alveolar lavages at 48 h (consistent with the increased surfactant pool sizes). Clearance of radiolabeled dipalmitoylphosphatidylcholine and SP-B from the air spaces after intratracheal injection was similar in SP-A(-/-) and SP-A(+/+) mice. Lack of SP-A had minimal effects on the overall metabolism of Sat PC or SP-B in mice.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katsumi Matsuzaki

It is widely accepted that the conversion of the soluble, nontoxic amyloidβ-protein (Aβ) monomer to aggregated toxic Aβrich inβ-sheet structures is central to the development of Alzheimer’s disease. However, the mechanism of the abnormal aggregation of Aβin vivo is not well understood. Accumulating evidence suggests that lipid rafts (microdomains) in membranes mainly composed of sphingolipids (gangliosides and sphingomyelin) and cholesterol play a pivotal role in this process. This paper summarizes the molecular mechanisms by which Aβaggregates on membranes containing ganglioside clusters, forming amyloid fibrils. Notably, the toxicity and physicochemical properties of the fibrils are different from those of Aβamyloids formed in solution. Furthermore, differences between Aβ-(1–40) and Aβ-(1–42) in membrane interaction and amyloidogenesis are also emphasized.


2004 ◽  
Vol 377 (2) ◽  
pp. 459-467 ◽  
Author(s):  
Jose M. LAPLAZA ◽  
Magnolia BOSTICK ◽  
Derek T. SCHOLES ◽  
M. Joan CURCIO ◽  
Judy CALLIS

In Saccharomyces cerevisiae, the ubiquitin-like protein Rub1p (related to ubiquitin 1 protein) covalently attaches to the cullin protein Cdc53p (cell division cycle 53 protein), a subunit of a class of ubiquitin E3 ligases named SCF (Skp1–Cdc53–F-box protein) complex. We identified Rtt101p (regulator of Ty transposition 101 protein, where Ty stands for transposon of yeast), initially found during a screen for proteins to confer retrotransposition suppression, and Cul3p (cullin 3 protein), a protein encoded by the previously uncharacterized open reading frame YGR003w, as two new in vivo targets for Rub1p conjugation. These proteins show significant identity with Cdc53p and, therefore, are cullin proteins. Modification of Cul3p is eliminated by deletion of the Rub1p pathway through disruption of either RUB1 or its activating enzyme ENR2/ULA1. The same disruptions in the Rub pathway decreased the percentage of total Rtt101p that is modified from approx. 60 to 30%. This suggests that Rtt101p has an additional RUB1- and ENR2-independent modification. All modified forms of Rtt101p and Cul3p were lost when a single lysine residue in a conserved region near the C-terminus was replaced by an arginine residue. These results suggest that this lysine residue is the site of Rub1p-dependent and -independent modifications in Rtt101p and of Rub1p-dependent modification in Cul3p. An rtt101Δ strain was hypersensitive to thiabendazole, isopropyl (N-3-chlorophenyl) carbamate and methyl methanesulphonate, but rub1Δ strains were not. Whereas rtt101Δ strains exhibited a 14-fold increase in Ty1 transposition, isogenic rub1Δ strains did not show statistically significant increases. Rtt101K791Rp, which cannot be modified, complemented for Rtt101p function in a transposition assay. Altogether, these results suggest that neither the RUB1-dependent nor the RUB1-independent form of Rtt101p is required for Rtt101p function. The identification of additional Rub1p targets in S. cerevisiae suggests an expanded role for Rub in this organism.


Sign in / Sign up

Export Citation Format

Share Document