A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase

2009 ◽  
Vol 419 (2) ◽  
pp. 329-338 ◽  
Author(s):  
Masahiko Taura ◽  
Kei Miyano ◽  
Reiko Minakami ◽  
Sachiko Kamakura ◽  
Ryu Takeya ◽  
...  

The superoxide-producing NADPH oxidase in phagocytes is crucial for host defence; its catalytic core is the membrane-integrated protein gp91phox [also known as Nox2 (NADPH oxidase 2)], which forms a stable heterodimer with p22phox. Activation of the oxidase requires membrane translocation of the three cytosolic proteins p47phox, p67phox and the small GTPase Rac. At the membrane, these proteins assemble with the gp91phox–p22phox heterodimer and induce a conformational change of gp91phox, leading to superoxide production. p47phox translocates to membranes using its two tandemly arranged SH3 domains, which directly interact with p22phox, whereas p67phox is recruited in a p47phox-dependent manner. In the present study, we show that a short region N-terminal to the bis-SH3 domain is required for activation of the phagocyte NADPH oxidase. Alanine substitution for Ile152 in this region, a residue that is completely conserved during evolution, results in a loss of the ability to activate the oxidase; and the replacement of Thr153 also prevents oxidase activation, but to a lesser extent. In addition, the corresponding isoleucine residue (Ile155) of the p47phox homologue Noxo1 (Nox organizer 1) participates in the activation of non-phagocytic oxidases, such as Nox1 and Nox3. The I152A substitution in p47phox, however, does not affect its interaction with p22phox or with p67phox. Consistent with this, a mutant p47phox (I152A), as well as the wild-type protein, is targeted upon cell stimulation to membranes, and membrane recruitment of p67phox and Rac normally occurs in p47phox (I152A)-expressing cells. Thus the Ile152-containing region of p47phox plays a crucial role in oxidase activation, probably by functioning at a process after oxidase assembly.

2006 ◽  
Vol 396 (1) ◽  
pp. 183-192 ◽  
Author(s):  
Ikuo Nobuhisa ◽  
Ryu Takeya ◽  
Kenji Ogura ◽  
Noriko Ueno ◽  
Daisuke Kohda ◽  
...  

Activation of the superoxide-producing phagocyte NADPH oxidase, crucial for host defence, requires an SH3 (Src homology 3)-domain-mediated interaction of the regulatory protein p47phox with p22phox, a subunit of the oxidase catalytic core flavocytochrome b558. Although previous analysis of a crystal structure has demonstrated that the tandem SH3 domains of p47phox sandwich a short PRR (proline-rich region) of p22phox (amino acids 151–160), containing a polyproline II helix, it has remained unknown whether this model is indeed functional in activation of the oxidase. In the present paper we show that the co-operativity between the two SH3 domains of p47phox, as expected from the model, is required for oxidase activation. Deletion of the linker between the p47phox SH3 domains results not only in a defective binding to p22phox but also in a loss of the activity to support superoxide production. The present analysis using alanine-scanning mutagenesis identifies Pro152, Pro156 and Arg158 in the p22phox PRR as residues indispensable for the interaction with p47phox. Pro152 and Pro156 are recognized by the N-terminal SH3 domain, whereas Arg158 contacts with the C-terminal SH3 domain. Amino acid substitution for any of the three residues in the p22phox PRR abrogates the superoxide-producing activity of the oxidase reconstituted in intact cells. The bis-SH3-mediated interaction of p47phox with p22phox thus functions to activate the phagocyte oxidase. Furthermore, we provide evidence that a region C-terminal to the PRR of p22phox (amino acids 161–164), adopting an α-helical conformation, participates in full activation of the phagocyte oxidase by fortifying the association with the p47phox SH3 domains.


2021 ◽  
Author(s):  
Hana Valenta ◽  
Sophie Dupré-Crochet ◽  
Tania Bizouarn ◽  
Laura Baciou ◽  
Oliver Nüsse ◽  
...  

ABSTRACTThe phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2•−), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1-286), p67phox (aa 1-212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.HighlightsTrimera is a tool to trigger a continuous ROS production in living cellsContinuous NOX2 activity causes cytosol acidification and apoptosisROS overproduction leads to localized oxidation of the membrane lipidsTrimera tends to clusterize in the plasma membrane of COSNOX and COS-7 cells


2020 ◽  
Author(s):  
Ana Krotenberg Garcia ◽  
Arianna Fumagalli ◽  
Huy Quang Le ◽  
Owen J. Sansom ◽  
Jacco van Rheenen ◽  
...  

AbstractCompetitive cell-interactions play a crucial role in quality control during development and homeostasis. Here we show that cancer cells use such interactions to actively eliminate wild-type intestine cells in enteroid monolayers and organoids. This apoptosis-dependent process boosts proliferation of intestinal cancer cells. The remaining wild-type population activates markers of primitive epithelia and transits to a fetal-like state. Prevention of this cell fate transition avoids elimination of wild-type cells and, importantly, limits the proliferation of cancer cells. JNK signalling is activated in competing cells and is required for cell fate change and elimination of wild-type cells. Thus, cell competition drives growth of cancer cells by active out-competition of wild-type cells through forced cell death and cell fate change in a JNK dependent manner.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Daniel N Meijles ◽  
Imad Al Ghouleh ◽  
Sanghamitra Sahoo ◽  
Jefferson H Amaral ◽  
Heather Knupp ◽  
...  

Organismal aging represents an independent risk factor underlying many vascular diseases, including systemic and pulmonary hypertension, and atherosclerosis. While the mechanisms driving aging are largely elusive, a steady persistent increase in tissue oxidative stress has been associated with senescence. Previously we showed TSP1 elicits NADPH oxidase (Nox)-dependent vascular smooth muscle cell oxidative stress. However mechanisms by which TSP1 affects endothelial redox biology are unknown. Here, we tested the hypothesis that TSP1 induces endothelial oxidative stress-linked senescence in aging. Using rapid autopsy disease-free human pulmonary (PA) artery, we identified a significant positive correlation between age, protein levels of TSP1, Nox1 and the cell-cycle repressor p21cip (p<0.05). Age also positively associated with increased Amplex Red-detected PA hydrogen peroxide levels (p<0.05). Moreover, treatment of human PA endothelial cells (HPAEC) with TSP1 (2.2nM; 24h) increased expression (~1.9 fold; p<0.05) and activation of Nox1 (~1.7 fold; p<0.05) compared to control, as assessed by Western blot and SOD-inhibitable cytochrome c reduction. Western blotting and immunofluorescence showed a TSP1-mediated increase in p53 activation, indicative of the DNA damage response. Moreover, TSP1 significantly increased HPAEC senescence in a p53/p21cip/Rb-dependent manner, as assessed by immunofluorescent detection of subcellular localization and senescence-associated β-galactosidase staining. To explore this pathway in vivo, middle-aged (8-10 month) wild-type and TSP1-null mice were utilized. In the TSP1-null, reduced lung senescence, oxidative stress, Nox1 levels and p21cip expression were observed compared to wild-type supporting findings in human samples and cell experiments. Finally, prophylactic treatment with specific Nox1 inhibitor NoxA1ds (10μM) attenuated TSP1-induced HPAEC ROS, p53 activation, p21cip expression and senescence. Taken together, our results provide molecular insight into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence, with implications for molecular control of the aging process.


FEBS Letters ◽  
1996 ◽  
Vol 385 (3) ◽  
pp. 229-232 ◽  
Author(s):  
Takashi Ito ◽  
Rika Nakamura ◽  
Hideki Sumimoto ◽  
Koichiro Takeshige ◽  
Yoshiyuki Sakaki

2005 ◽  
Vol 18 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Wolfgang Moeder ◽  
Keiko Yoshioka ◽  
Daniel F. Klessig

During the hypersensitive response (HR), plants accumulate reactive oxygen species (ROS) that are likely generated at least in part by an NADPH oxidase similar to that found in mammalian neutrophils. An essential regulator of mammalian NADPH oxidase is the small GTP-binding protein Rac. To investigate whether Rac also regulates the pathogen-induced oxidative burst in plants, a dominant negative form of the rice OsRac1 gene was overexpressed in tobacco carrying the N resistance gene. Following infection with Tobacco mosaic virus (TMV), DN-OsRac1 plants developed smaller lesions than wild-type plants, accumulated lower levels of lipid peroxidation products, and failed to activate expression of antioxidant genes. These results, combined with the demonstration that superoxide and hydrogen peroxide levels were reduced in DN-OsRac1 tobacco developing a synchronous HR triggered by transient expression of the TMV p50 helicase domain or the Pto and AvrPto proteins, suggest that ROS production is impaired. The dominant negative effect of DN-OsRac1 could be rescued by transiently overexpressing the wild-type OsRac1 protein. TMV-induced salicylic acid accumulation also was compromised in DN-OsRac1 tobacco. Interestingly, while systemic acquired resistance to TMV was not impaired, nonhost resistance to Pseudomonas syringae pv. maculicola ES4326 was suppressed. Thus, the effect DN-OsRac1 expression exerts on the resistance signaling pathway appears to vary depending on the identity of the inoculated pathogen.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Rong Jin ◽  
Zifang Song ◽  
Shiyong Yu ◽  
Daniel J Daunis ◽  
Brittany S Hopkins ◽  
...  

Rationale: Although CD40/CD40 ligand (CD40L) signaling has been implicated in clinical and experimental ischemic strokes, the underlying mechanisms are largely unclear. Objective: We investigated how CD40 participates in the cellular and molecular events underlying the postischemic inflammation and oxidative stress that may contribute to the tissue damage during cerebral ischemia. Methods and Results: Wild-type (WT, n=164) and CD40 knockout mice (n=132) were subjected to middle cerebral artery occlusion (MCAO, 60 minutes) followed by reperfusion. We found that ischemia/reperfusion induced CD40 expression in the brain in a time-dependent manner, primarily localized to the microvascular endothelial cells in the early phase (6h) and then to the activated microglia in the later time (24h). The adhesion and infiltration of neutrophils as well as the activation and expansion of microglia induced by ischemia/reperfusion were inhibited in CD40-/- mice, which were time-dependently correlated with suppressing nuclear factor-kB activation and proinflammatory cytokines (IL-1β, TNFα) and adhesion molecules (E- and P-selectin, ICAM-1,MCP-1). Infarct volumes and mortality were reduced in CD40-/- mice at 72h after ischemia/reperfusion. Treatment with an inhibitor of either NADPH oxidase or COX-2, the known enzymes that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD40-/- mice. In contrast, treatment with an inhibitor of inducible nitric oxide synthase (iNOS) further reduced tissue injury in CD40-/- mice. Consistently, ischemia/reperfusion-induced upregulation of NADPH oxidase (Nox2, and Nox4) and COX-2, but not iNOS, were attenuated in CD40-/- mice. Conclusions: The findings unveil an essential role for CD40 in the regulation of early molecular and cellular events leading to postischemic inflammation. Inhibition of CD40 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.


2003 ◽  
Vol 285 (2) ◽  
pp. F219-F229 ◽  
Author(s):  
Yves Gorin ◽  
Jill M. Ricono ◽  
Nam-Ho Kim ◽  
Basant Bhandari ◽  
Goutam Ghosh Choudhury ◽  
...  

ANG II induces protein synthesis through the serine-threonine kinase Akt/protein kinase B (PKB) in mesangial cells (MCs). The mechanism(s) of activation of Akt/PKB particularly by G protein-coupled receptors, however, is not well characterized. We explored the role of the small GTPase Rac1, a component of the phagocyte NADPH oxidase, and the gp91 phox homologue Nox4/Renox in this signaling pathway. ANG II causes rapid activation of Rac1, an effect abrogated by phospholipase A2 inhibition and mimicked by arachidonic acid (AA). Northern blot analysis revealed high levels of Nox4 transcript in MCs and transfection with antisense (AS) oligonucleotides for Nox4 markedly decreased NADPH-dependent reactive oxygen species (ROS)-producing activity. Dominant negative Rac1 (N17Rac1) as well as AS Nox4 inhibited ROS generation in response to ANG II and AA, whereas constitutively active Rac1 stimulated ROS formation. Moreover, N17Rac1 blocked stimulation of NADPH oxidase activity by AA. N17Rac1 or AS Nox4 abolished ANG II- or AA-induced activation of the hypertrophic kinase Akt/PKB. In addition, AS Nox4 inhibited ANG II-induced protein synthesis. These data provide the first evidence that activation by AA of a Rac1-regulated, Nox4-based NAD(P)H oxidase and subsequent generation of ROS mediate the effect of ANG II on Akt/PKB activation and protein synthesis in MCs.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Benfang Lei ◽  
Dylan Minor ◽  
Wenchao Feng ◽  
Maria Jerome ◽  
Mark T. Quinn ◽  
...  

ABSTRACTGroup AStreptococcus(GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagAwere full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagAinfection was not cleared. Gp91phoxknockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA−) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.


2003 ◽  
Vol 373 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Guihong PENG ◽  
Jin HUANG ◽  
Mellonie BOYD ◽  
Michael E. KLEINBERG

In an early step in the assembly of the phagocyte NADPH oxidase, p47-phox translocates from the cytosol to the membrane, mediated by engagement of the N-termini of two p47-phox Src homology 3 (SH3) domains with a proline-rich region (PRR) in the p22-phox subunit of cytochrome b558. In response to phagocyte activation, several serine residues in a C-terminal arginine/lysine-rich domain of p47-phox are phosphorylated, leading to changes in the conformation of p47-phox and exposure of its N-terminal SH3 domain that is normally masked by internal association with the arginine/lysine-rich domain. We report that triple alanine substitutions at Asp-217, Glu-218 and Glu-223 in a short sequence that links the tandem p47-phox SH3 domains unmasked the N-terminal SH3 domain, similar to the effects of aspartic acid substitutions at Ser-310 and Ser-328 in the arginine/lysine-rich region. Recombinant p47-phox proteins with mutations in either the linker region or the arginine/lysine-rich domain were active in the absence of arachidonic acid stimulation in a cell-free NADPH oxidase system consisting of recombinant p67-phox, Rac1–guanosine 5′-[γ-thio]triphosphate and neutrophil membranes. Supplementing neutrophil membranes with phosphoinositides or other negatively charged phospholipids markedly enhanced cell-free superoxide generation by these p47-phox mutants in the absence of arachidonic acid, to levels equivalent to those generated by wild-type p47-phox following arachidonic acid activation. This enhancement may be related to recruitment to the membrane of p47-phox mediated by a novel secondary phox homology (PX) domain binding site that broadly recognizes phospholipids. No specific enhancement by specific phosphorylated phosphatidylinositols was found to suggest a dominant role for the p47-phox primary PX domain binding site. Truncated p47-phox S310D S328D lacking the C-terminal PRR was inactive in the cell-free system without arachidonic acid, but was fully active with arachidonic acid. This suggests that activation of NADPH oxidase in an arachidonate-free cell-free system requires association of the p47-phox C-terminal PRR with the p67-phox C-terminal SH3 domain.


Sign in / Sign up

Export Citation Format

Share Document