scholarly journals Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide

2009 ◽  
Vol 420 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Catherine L. Watkins ◽  
Dirk Schmaljohann ◽  
Shiroh Futaki ◽  
Arwyn T. Jones

The exact mechanisms by which cell-penetrating peptides such as oligo-arginines and penetratin cross biological membranes has yet to be elucidated, but this is required if they are to reach their full potential as cellular delivery vectors. In the present study, qualitative and quantitative analysis of the influence of temperature, peptide concentration and plasma membrane cholesterol on the uptake and subcellular distribution of the model cell-penetrating peptide octa-arginine was performed in a number of suspension and adherent cell lines. When experiments were performed on ice, the peptide at 2 μM extracellular concentration efficiently entered and uniformly labelled the cytoplasm of all the suspension cells studied, but a 10-fold higher concentration was required to observe similar results in adherent cells. At 37 °C and at higher peptide concentrations, time-lapse microscopy experiments showed that the peptide rapidly penetrated the entire plasma membrane of suspension cells, with no evidence of a requirement for nucleation zones to promote this effect. Cholesterol depletion with methyl-β-cyclodextrin enhanced translocation of octa-arginine across the plasma membrane of suspension cells at 37 °C, but decreased overall peptide accumulation. Under the same conditions in adherent cells this agent had no effect on peptide uptake or distribution. Cholesterol depletion increased the overall accumulation of the peptide at 4 °C in KG1a cells, but this effect could be reversed by re-addition of cholesterol as methyl-β-cyclodextrin–cholesterol complexes. The results highlight the relatively high porosity of the plasma membrane of suspension cells to this peptide, especially at low temperatures, suggesting that this feature could be exploited for delivering bioactive entities.

2016 ◽  
Vol 31 (3) ◽  
pp. 975-988 ◽  
Author(s):  
Carmen Juks ◽  
Annely Lorents ◽  
Piret Arukuusk ◽  
Ülo Langel ◽  
Margus Pooga

2015 ◽  
Vol 471 (2) ◽  
pp. 221-230 ◽  
Author(s):  
Kamran Melikov ◽  
Ann Hara ◽  
Kwabena Yamoah ◽  
Elena Zaitseva ◽  
Eugene Zaitsev ◽  
...  

Mechanisms by which drug-delivery vehicles based on cationic peptides cross cell membranes remain unknown. We report that an increase in intracellular calcium triggered by temperature drop or high peptide concentrations transiently permeabilizes the plasma membrane for nona-arginine (R9) and delivers it to the cytosol.


2007 ◽  
Vol 403 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Marjan M. Fretz ◽  
Neal A. Penning ◽  
Saly Al-Taei ◽  
Shiroh Futaki ◽  
Toshihide Takeuchi ◽  
...  

Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4–12 °C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 °C incubations. At temperatures between 12 and 30 °C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 °C. Small increases in the extracellular peptide concentration in 37 °C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-β-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane.


2019 ◽  
Vol 7 (4) ◽  
pp. 1493-1506 ◽  
Author(s):  
Feng Guo ◽  
Ting Ouyang ◽  
Taoxing Peng ◽  
Xiuying Zhang ◽  
Baogang Xie ◽  
...  

In this study, amphipathic chitosan derivative (ACS) and cell-penetrating peptide (CPP) co-modified colon-specific nanoparticles (CS-CPP NPs) were prepared and evaluated.


2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Hua Li ◽  
Jiwen He ◽  
Huimin Yi ◽  
Guoan Xiang ◽  
Kaiyun Chen ◽  
...  

In the present study, we delivered human telomerase reverse transcriptase (hTERT) siRNA into SMMC-7721 hepatoma cells using a matrix metalloproteinase-2 (MMP2)-activatable cell-penetrating peptide (aCPP). The siRNA subsequently induced down-regulation of the hTERT gene and G1-arrest, implicating the utility of this delivery system in cancer therapy.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36116-36124
Author(s):  
Omar Paulino da Silva Filho ◽  
Muhanad Ali ◽  
Rike Nabbefeld ◽  
Daniel Primavessy ◽  
Petra H. Bovee-Geurts ◽  
...  

Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 727 ◽  
Author(s):  
Perche

The integration of drugs into nanocarriers favorably altered their pharmacodynamics and pharmacokinetics compared to free drugs, and increased their therapeutic index. However, selective cellular internalization in diseased tissues rather than normal tissues still presents a formidable challenge. In this chapter I will cover solutions involving environment-responsive cell-penetrating peptides (CPPs). I will discuss properties of CPPs as universal cellular uptake enhancers, and the modifications imparted to CPP-modified nanocarriers to confine CPP activation to diseased tissues.


2007 ◽  
Vol 35 (4) ◽  
pp. 775-779 ◽  
Author(s):  
R. Abes ◽  
A.A. Arzumanov ◽  
H.M. Moulton ◽  
S. Abes ◽  
G.D. Ivanova ◽  
...  

Cationic CPPs (cell-penetrating peptides) have been used largely for intracellular delivery of low-molecular-mass drugs, biomolecules and particles. Most cationic CPPs bind to cell-associated glycosaminoglycans and are internalized by endocytosis, although the detailed mechanisms involved remain controversial. Sequestration and degradation in endocytic vesicles severely limits the efficiency of cytoplasmic and/or nuclear delivery of CPP-conjugated material. Re-routing the splicing machinery by using steric-block ON (oligonucleotide) analogues, such as PNAs (peptide nucleic acids) or PMOs (phosphorodiamidate morpholino oligomers), has consequently been inefficient when ONs are conjugated with standard CPPs such as Tat (transactivator of transcription), R9 (nona-arginine), K8 (octalysine) or penetratin in the absence of endosomolytic agents. New arginine-rich CPPs such as (R-Ahx-R)4 (6-aminohexanoic acid-spaced oligo-arginine) or R6 (hexa-arginine)–penetratin conjugated to PMO or PNA resulted in efficient splicing correction at non-cytotoxic doses in the absence of chloroquine. SAR (structure–activity relationship) analyses are underway to optimize these peptide delivery vectors and to understand their mechanisms of cellular internalization.


Sign in / Sign up

Export Citation Format

Share Document