Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation

2012 ◽  
Vol 442 (2) ◽  
pp. 369-380 ◽  
Author(s):  
Benjamin Selles ◽  
Martin Hugo ◽  
Madia Trujillo ◽  
Vaibhav Srivastava ◽  
Gunnar Wingsle ◽  
...  

Gpxs (glutathione peroxidases) constitute a family of peroxidases, including selenocysteine- or cysteine-containing isoforms (SeCys-Gpx or Cys-Gpx), which are regenerated by glutathione or Trxs (thioredoxins) respectively. In the present paper we show new data concerning the substrates of poplar Gpx5 and the residues involved in its catalytic mechanism. The present study establishes the capacity of this Cys-Gpx to reduce peroxynitrite with a catalytic efficiency of 106 M−1·s−1. In PtGpx5 (poplar Gpx5; Pt is Populus trichocarpa), Glu79, which replaces the glutamine residue usually found in the Gpx catalytic tetrad, is likely to be involved in substrate selectivity. Although the redox midpoint potential of the Cys44–Cys92 disulfide bond and the pKa of Cys44 are not modified in the E79Q variant, it exhibited significantly improved kinetic parameters (Kperoxide and kcat) with tert-butyl hydroperoxide. The characterization of the monomeric Y151R variant demonstrated that PtGpx5 is not an obligate homodimer. Also, we show that the conserved Phe90 is important for Trx recognition and that Trx-mediated recycling of PtGpx5 occurs via the formation of a transient disulfide bond between the Trx catalytic cysteine residue and the Gpx5 resolving cysteine residue. Finally, we demonstrate that the conformational changes observed during the transition from the reduced to the oxidized form of PtGpx5 are primarily determined by the oxidation of the peroxidatic cysteine into sulfenic acid. Also, MS analysis of in-vitro-oxidized PtGpx5 demonstrated that the peroxidatic cysteine residue can be over-oxidized into sulfinic or sulfonic acids. This suggests that some isoforms could have dual functions potentially acting as hydrogen-peroxide- and peroxynitrite-scavenging systems and/or as mediators of peroxide signalling as proposed for 2-Cys peroxiredoxins.

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Alberto Guevara-Flores ◽  
Irene P. del Arenal ◽  
Guillermo Mendoza-Hernández ◽  
Juan Pablo Pardo ◽  
Oscar Flores-Herrera ◽  
...  

Mitochondrial thioredoxin-glutathione reductase was purified from larvalTaenia crassiceps(cysticerci). The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At25∘Cspecific activities were437  ±  27mU mg-1and840  ±  49mU mg-1with thioredoxin and GSSG, respectively. ApparentKmvalues were0.87  ±  0.04 μM,41  ±  6 μM and19  ±  10 μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1822-C1822
Author(s):  
Geeta Deka ◽  
Shveta Bisht ◽  
H.S. Savithri ◽  
M.R.N Murthy

Diaminopropionate ammonia lyase (DAPAL) is a non-stereo specific fold-type II pyridoxal 5' phosphate (PLP) dependent enzyme that catalyzes the conversion of both D/L isoforms of the nonstandard amino acid Diaminopropionate (DAP) to pyruvate and ammonia. DAP is important for the synthesis of nonribosomal peptide antibiotics such as viomycin and capreomycin. Earlier structural studies on EcDAPAL bound to a reaction intermediate (aminoacrylate) suggested that the enzyme follows a two base mechanism, where Asp120 and Lys77 function as general bases to abstract proton from D-DAP and L-DAP respectively. A novel disulfide was observed near the active site, although its functional significance was not clear. In the present study, structural and biochemical characterization of active site mutants Asp120 (Asp120Asn/Ser/Thr/Cys) and Lys77 (Lys77His/ Thr/Ala/Val) of EcDAPAL has been carried out. Reduction of catalytic efficiency (Kcat/Km) of D120N EcDAPAL for D-DAP by 140 fold and presence of the uncatalyzed ligand at the active site in the crystal structure suggested that Asp120 indeed abstracts proton from D-DAP. Lys77, which was speculated to be important for proton abstraction from L DAP, however seemed to be crucial for PLP binding only. Presence of non-covalently bound PLP in the L77W mutant and occurence of both the ketoenamine, enolimine forms of internal aldimine in L77R mutant provided an in depth insight into the unique chemistry of internal aldimine formation in PLP dependent enzymes. To investigate the role of the novel disulfide bond near the active site, C265 and C291 were mutated to Serine. Studies on these mutants show that this disulfide bond gives additional stability to the protein and might regulate the entry of substrates to the active site. Thus, these studies provide deeper insights into the reaction mechanism of EcDAPAL, representing the overall reaction mechanism followed by several other fold-type II PLP pendent enzymes.


2021 ◽  
Vol 1 ◽  
Author(s):  
Eun Young Hong ◽  
Sun-Gu Lee ◽  
Hyungdon Yun ◽  
Byung-Gee Kim

Agmatine, involved in various modulatory actions in cellular mechanisms, is produced from arginine (Arg) by decarboxylation reaction using arginine decarboxylase (ADC, EC 4.1.1.19). The major obstacle of using wild-type Escherichia coli ADC (ADCes) in agmatine production is its sharp activity loss and instability at alkaline pH. Here, to overcome this problem, a new disulfide bond was rationally introduced in the decameric interface region of the enzyme. Among the mutants generated, W16C/D43C increased both thermostability and activity. The half-life (T1/2) of W16C/D43C at pH 8.0 and 60°C was 560 min, which was 280-fold longer than that of the wild-type, and the specific activity at pH 8.0 also increased 2.1-fold. Site-saturation mutagenesis was subsequently performed at the active site residues of ADCes using the disulfide-bond mutant (W16C/D43C) as a template. The best variant W16C/D43C/I258A displayed a 4.4-fold increase in the catalytic efficiency when compared with the wild-type. The final mutant (W16C/D43C/I258A) was successfully applied to in vitro synthesis of agmatine with an improved yield and productivity (>89.0% yield based on 100 mM of Arg within 5  h).


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 23-23
Author(s):  
An-Sofie Schelpe ◽  
Anastasis Petri ◽  
Nele Vandeputte ◽  
Hans Deckmyn ◽  
Simon F De Meyer ◽  
...  

Abstract Background ADAMTS13 circulates in a folded conformation, which is mediated by interactions between the C-terminal CUB domains and its central Spacer domain. Binding of ADAMTS13 to the VWF D4-CK domains disrupts the CUB-Spacer interaction, inducing a structural change that extends ADAMTS13 into an open conformation that enhances catalytic efficiency ~2-fold. This mechanism supports a model in which ADAMTS13 unfolding induces exposure of an exosite in the Spacer domain that interacts with the VWF A2 domain, increasing the affinity between the two molecules, and, therefore, the rate of proteolysis. The D4-CK-mediated conformational activation of ADAMTS13 can be mimicked in vitro with the use of antibodies that disrupt the CUB-Spacer interaction, such as the previously published anti-CUB antibody, Ab17G2. We recently generated a novel, activating antibody against the Spacer domain (Ab3E4). Aim To characterize the mechanism by which the Ab17G2 and Ab3E4 enhance the catalytic efficiency of ADAMTS13. Methods The effects of the Ab17G2 and Ab3E4 on the activity of ADAMTS13 were studied using FRETS-VWF73. The effects of the Ab17G2 and Ab3E4 on the kinetics of VWF96 (VWF G1573-R1668) proteolysis were characterized using an in-house assay. ELISA was used to investigate conformational changes in ADAMTS13 induced by the Ab17G2 and Ab3E4. Results Both Ab17G2 and Ab3E4 enhanced FRETS-VWF73 proteolysis by ~1.7-fold. This result was reproduced using the VWF96 substrate; the Ab17G2 and Ab3E4 enhanced the catalytic efficiency (kcat/Km) of ADAMTS13 by ~1.8- and ~2.0-fold, respectively. The activation was dependent on the conformational extension of ADAMTS13, since the antibodies could not enhance the activity of an ADAMTS13 variant that lacks the TSP2-CUB2 domains (MDTCS). Surprisingly, ADAMTS13 activation was not mediated through exposure of the Spacer or Cys-rich domain exosites as previously proposed, as the Ab17G2 and Ab3E4 efficiently enhanced proteolysis of VWF96 variants in which the Spacer/Cys-rich exosite binding sites were disrupted. Kinetic analysis of VWF96 proteolysis showed that the Ab17G2- and Ab3E4-induced activation of ADAMTS13 is primarily manifest through a ~1.5- to ~2-fold increase in enzyme turnover (kcat). Thus, contrary to the current model, this suggests that the conformational extension of ADAMTS13 influences the functionality of the active site, and not substrate binding affinity (Km). Incubating ADAMTS13 with either Ab17G2 or Ab3E4 exposed a cryptic epitope in the metalloprotease domain that was specifically detected by ELISA, further corroborating that the antibodies induce a conformational change in ADAMTS13 affecting the M domain. Conclusion Antibodies can be used as tools for understanding the structure/function of enzymes. Using activating antibodies against the Spacer and CUB1 domains of ADAMTS13, we show for the first time that the activation of ADAMTS13 following its unfolding is not a result of exposure of a functional exosite in Spacer/Cys-rich domain that increases affinity to VWF. Rather, our data are consistent with an allosteric activation mechanism upon the metalloprotease domain. We propose that ADAMTS13 unfolding causes a conformational change in the active site that further activates the enzyme. We are currently investigating whether the D4-CK-induced enhancement of ADAMTS13 proteolytic activity is also mediated by conformational changes in the active site. Disclosures Vanhoorelbeke: Ablynx: Consultancy; Shire: Consultancy.


2015 ◽  
Vol 71 (3) ◽  
pp. 505-515 ◽  
Author(s):  
Kavitha Marapakala ◽  
Charles Packianathan ◽  
A. Abdul Ajees ◽  
Dharmendra S. Dheeman ◽  
Banumathi Sankaran ◽  
...  

Methylation of the toxic metalloid arsenic is widespread in nature. Members of every kingdom have arsenic(III)S-adenosylmethionine (SAM) methyltransferase enzymes, which are termed ArsM in microbes and AS3MT in animals, including humans. Trivalent arsenic(III) is methylated up to three times to form methylarsenite [MAs(III)], dimethylarsenite [DMAs(III)] and the volatile trimethylarsine [TMAs(III)]. In microbes, arsenic methylation is a detoxification process. In humans, MAs(III) and DMAs(III) are more toxic and carcinogenic than either inorganic arsenate or arsenite. Here, new crystal structures are reported of ArsM from the thermophilic eukaryotic algaCyanidioschyzonsp. 5508 (CmArsM) with the bound aromatic arsenicals phenylarsenite [PhAs(III)] at 1.80 Å resolution and reduced roxarsone [Rox(III)] at 2.25 Å resolution. These organoarsenicals are bound to two of four conserved cysteine residues: Cys174 and Cys224. The electron density extends the structure to include a newly identified conserved cysteine residue, Cys44, which is disulfide-bonded to the fourth conserved cysteine residue, Cys72. A second disulfide bond between Cys72 and Cys174 had been observed previously in a structure with bound SAM. The loop containing Cys44 and Cys72 shifts by nearly 6.5 Å in the arsenic(III)-bound structures compared with the SAM-bound structure, which suggests that this movement leads to formation of the Cys72–Cys174 disulfide bond. A model is proposed for the catalytic mechanism of arsenic(III) SAM methyltransferases in which a disulfide-bond cascade maintains the products in the trivalent state.


2006 ◽  
Vol 397 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Colin J. Jackson ◽  
Paul D. Carr ◽  
Hye-Kyung Kim ◽  
Jian-Wei Liu ◽  
Paul Herrald ◽  
...  

Bacterial phosphotriesterases are binuclear metalloproteins for which the catalytic mechanism has been studied with a variety of techniques, principally using active sites reconstituted in vitro from apoenzymes. Here, atomic absorption spectroscopy and anomalous X-ray scattering have been used to determine the identity of the metals incorporated into the active site in vivo. We have recombinantly expressed the phosphotriesterase from Agrobacterium radiobacter (OpdA) in Escherichia coli grown in medium supplemented with 1 mM CoCl2 and in unsupplemented medium. Anomalous scattering data, collected from a single crystal at the Fe–K, Co–K and Zn–K edges, indicate that iron and cobalt are the primary constituents of the two metal-binding sites in the catalytic centre (α and β) in the protein expressed in E. coli grown in supplemented medium. Comparison with OpdA expressed in unsupplemented medium demonstrates that the cobalt present in the supplemented medium replaced zinc at the β-position of the active site, which results in an increase in the catalytic efficiency of the enzyme. These results suggest an essential role for iron in the catalytic mechanism of bacterial phosphotriesterases, and that these phosphotriesterases are natively heterobinuclear iron–zinc enzymes.


2002 ◽  
Vol 184 (10) ◽  
pp. 2634-2641 ◽  
Author(s):  
Larry C. Anthony ◽  
Alan A. Dombkowski ◽  
Richard R. Burgess

ABSTRACT RNA polymerase of Escherichia coli is the sole enzyme responsible for mRNA synthesis in the cell. Upon binding of a sigma factor, the holoenzyme can direct transcription from specific promoter sequences. We have previously defined a region of the β′ subunit (β′260-309, amino acids 260 to 309) which adopts a coiled-coil conformation shown to interact with σ70 both in vitro and in vivo. However, it was not known if the coiled-coil conformation was maintained upon binding to σ70. In this work, we engineered a disulfide bond within β′240-309 that locks the β′ coiled-coil region in the coiled-coil conformation, and we show that this “locked” peptide is able to bind to σ70. We also show that the locked coiled-coil is capable of inducing a conformational change within σ70 that allows recognition of the −10 nontemplate strand of DNA. This suggests that the coiled-coil does not adopt a new conformation upon binding σ70 or upon recognition of the −10 nontemplate strand of DNA.


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


Sign in / Sign up

Export Citation Format

Share Document