nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants

2013 ◽  
Vol 449 (3) ◽  
pp. 595-603 ◽  
Author(s):  
Fernando Gomes ◽  
Erich B. Tahara ◽  
Cleverson Busso ◽  
Alicia J. Kowaltowski ◽  
Mario H. Barros

Saccharomyces cerevisiae has three distinct inner mitochondrial membrane NADH dehydrogenases mediating the transfer of electrons from NADH to CoQ (coenzyme Q): Nde1p, Nde2p and Ndi1p. The active site of Ndi1p faces the matrix side, whereas the enzymatic activities of Nde1p and Nde2p are restricted to the intermembrane space side, where they are responsible for cytosolic NADH oxidation. In the present study we genetically manipulated yeast strains in order to alter the redox state of CoQ and NADH dehydrogenases to evaluate the consequences on mtDNA (mitochondrial DNA) maintenance. Interestingly, nde1 deletion was protective for mtDNA in strains defective in CoQ function. Additionally, the absence of functional Nde1p promoted a decrease in the rate of H2O2 release in isolated mitochondria from different yeast strains. On the other hand, overexpression of the predominant NADH dehydrogenase NDE1 elevated the rate of mtDNA loss and was toxic to coq10 and coq4 mutants. Increased CoQ synthesis through COQ8 overexpression also demonstrated that there is a correlation between CoQ respiratory function and mtDNA loss: supraphysiological CoQ levels were protective against mtDNA loss in the presence of oxidative imbalance generated by Nde1p excess or exogenous H2O2. Altogether, our results indicate that impairment in the oxidation of cytosolic NADH by Nde1p is deleterious towards mitochondrial biogenesis due to an increase in reactive oxygen species release.

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


1988 ◽  
Vol 106 (5) ◽  
pp. 1499-1505 ◽  
Author(s):  
M Nguyen ◽  
A W Bell ◽  
G C Shore

Recently, we fused a matrix-targeting signal to a large fragment of vesicular stomatitis virus G protein, which contains near its COOH-terminus a well-characterized endoplasmic reticulum (ER) stop-transfer sequence; the hybrid G protein was sorted to the inner mitochondrial membrane (Nguyen, M., and G. C. Shore. 1987. J. Biol. Chem. 262:3929-3931). Here, we show that the 19 amino acid G stop-transfer domain functions in an identical fashion when inserted toward the COOH-terminus of an otherwise normal matrix precursor protein, pre-ornithine carbamyl transferase; after import, the mutant protein was found anchored in the inner membrane via the stop-transfer sequence, with its NH2 terminus facing the matrix and its short COOH-terminal tail located in the intermembrane space. However, when the G stop-transfer sequence was placed near the NH2 terminus, the protein was inserted into the outer membrane, in the reverse orientation (NH2 terminus facing out, with a large COOH-terminal fragment located in the intermembrane space). These observations for mitochondrial topogenesis can be explained by a simple extension of existing models for ER sorting.


2006 ◽  
Vol 5 (3) ◽  
pp. 568-578 ◽  
Author(s):  
Graham S. Banting ◽  
D. Moira Glerum

ABSTRACT Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa 3 peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Δcox11, like Δsco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Enrique Balderas-Angeles ◽  
Thirupura Shankar ◽  
Anthony Balynas ◽  
Xue Yin ◽  
Dipayan Chaudhuri

Inner mitochondrial membrane (IMM) ion channels and transporters account for communication of the matrix with the intermembrane space (IMS) and the cytosol. Transport of solutes and ions is keep under strict regulation mainly because small changes in solute concentrations could generate changes in mitochondrial volume or membrane potential (ΔΨ m ), interrupting ATP synthesis and leading to mitochondrial damage. The list of recently discovered mitochondrial ion channels has been growing in the past decades. In this work, using the patch-clamp technique we observed the activity of a novel mitochondrial current, named here LUNA current, in mitoplasts (IMM striped of outer membrane) from mouse liver, spleen, brain and heart, as well as established cell lines. LUNA is a novel non-selective cation current (K + >Na + >NMDG + >H + ) active at depolarized membrane potentials. The basal activity of whole-mitoplast LUNA currents from wild type mice hearts changed from 445±106 pA/pF to 1232±287 pA/pF upon chelation of external divalent cations (Ca 2+ and Mg 2+ ). Moreover, the activity of LUNA is independent of the mitochondrial Ca 2+ uniporter and of the non-selective reactive oxygen species modulator channel (ROMO1). In the heart, the activity of LUNA was enhanced in both the Tfam -KO mice, which have impaired electron transport chain (ETC) activity and are a model for mitochondrial cardiomyopathies, and mice with cardiac pressure overload due to transverse aortic constriction (TAC) compared to sham-operated hearts (729±197; n=7 vs 283±137 pA/pF). LUNA current is reversibly inhibited by amiloride with no sensitivity to the vast majority of common K + , Na + and Ca 2+ channels and ETC inhibitors. The molecular identity of mitochondrial LUNA current remains to be determined.


1991 ◽  
Vol 11 (11) ◽  
pp. 5487-5496 ◽  
Author(s):  
M E Dumont ◽  
T S Cardillo ◽  
M K Hayes ◽  
F Sherman

Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Heike Rampelt ◽  
Iva Sucec ◽  
Beate Bersch ◽  
Patrick Horten ◽  
Inge Perschil ◽  
...  

Abstract Background The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. Results Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. Conclusions The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


1996 ◽  
Vol 134 (3) ◽  
pp. 603-613 ◽  
Author(s):  
B Schilke ◽  
J Forster ◽  
J Davis ◽  
P James ◽  
W Walter ◽  
...  

SSH1, a newly identified member of the heat shock protein (hsp70) multigene family of the budding yeast Saccharomyces cerevisiae, encodes a protein localized to the mitochondrial matrix. Deletion of the SSH1 gene results in extremely slow growth at 23 degrees C or 30 degrees C, but nearly wild-type growth at 37 degrees C. The matrix of the mitochondria contains another hsp70, Ssc1, which is essential for growth and required for translocation of proteins into mitochondria. Unlike SSC1 mutants, an SSH1 mutant showed no detectable defects in import of several proteins from the cytosol to the matrix compared to wild type. Increased expression of Ssc1 partially suppressed the cold-sensitive growth defect of the SSH1 mutant, suggesting that when present in increased amounts, Ssc1 can at least partially carry out the normal functions of Ssh1. Spontaneous suppressors of the cold-sensitive phenotype of an SSH1 null mutant were obtained at a high frequency at 23 degrees C, and were all found to be respiration deficient. 15 of 16 suppressors that were analyzed lacked mitochondrial DNA, while the 16th had reduced amounts. We suggest that Ssh1 is required for normal mitochondrial DNA replication, and that disruption of this process in ssh1 cells results in a defect in mitochondrial function at low temperatures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary A. Kemmerer ◽  
Kyle P. Robinson ◽  
Jonathan M. Schmitz ◽  
Mateusz Manicki ◽  
Brett R. Paulson ◽  
...  

AbstractBeyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8—an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.


2006 ◽  
Vol 17 (1) ◽  
pp. 213-226 ◽  
Author(s):  
Cory D. Dunn ◽  
Marina S. Lee ◽  
Forrest A. Spencer ◽  
Robert E. Jensen

Unlike many other organisms, the yeast Saccharomyces cerevisiae can tolerate the loss of mitochondrial DNA (mtDNA). Although a few proteins have been identified that are required for yeast cell viability without mtDNA, the mechanism of mtDNA-independent growth is not completely understood. To probe the relationship between the mitochondrial genome and cell viability, we conducted a microarray-based, genomewide screen for mitochondrial DNA-dependent yeast mutants. Among the several genes that we discovered is MGR1, which encodes a novel subunit of the i-AAA protease complex located in the mitochondrial inner membrane. mgr1Δ mutants retain some i-AAA protease activity, yet mitochondria lacking Mgr1p contain a misassembled i-AAA protease and are defective for turnover of mitochondrial inner membrane proteins. Our results highlight the importance of the i-AAA complex and proteolysis at the inner membrane in cells lacking mitochondrial DNA.


Sign in / Sign up

Export Citation Format

Share Document