scholarly journals Decreased translation of Dio3 mRNA is associated with drug-induced hepatotoxicity

2013 ◽  
Vol 453 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Kate M. Dudek ◽  
Laura Suter ◽  
Veerle M. Darras ◽  
Emma L. Marczylo ◽  
Timothy W. Gant

Recent work has demonstrated the importance of post-transcriptional gene regulation in toxic responses. In the present study, we used two rat models to investigate mRNA translation in the liver following xenobiotic-induced toxicity. By combining polysome profiling with genomic methodologies, we were able to assess global changes in hepatic mRNA translation. Dio3 (iodothyronine deiodinase type III) was identified as a gene that exhibited specific translational repression and had a functional role in a number of relevant canonical pathways. Western blot analysis indicated that this repression led to reduced D3 (the protein expressed by Dio3) levels, enhanced over time and with increased dose. Using Northern blotting techniques and qRT-PCR (quantitative reverse transcription–PCR), we confirmed further that there was no reduction in Dio3 mRNA, suggesting that translational repression of Dio3 is an important determinant of the reduced D3 protein expression following liver damage. Finally, we show that drug-induced hepatotoxicity appears to cause localized disruptions in thyroid hormone levels in the liver and plasma. We suggest that this leads to reduced translation of Dio3 mRNA, which results in decreased D3 production. It may therefore be possible that this is an important mechanism by which the liver can, upon early signs of damage, act rapidly to maintain its own energy equilibrium, thereby avoiding global disruption of the hypothalamic–pituitary–thyroid axis.

2000 ◽  
Vol 74 (21) ◽  
pp. 10176-10186 ◽  
Author(s):  
T. Yamaguchi ◽  
S. L. Kaplan ◽  
P. Wakenell ◽  
K. A. Schat

ABSTRACT The QT35 cell line was established from a methylcholanthrene-induced tumor in Japanese quail (Coturnix coturnix japonica) (C. Moscovici, M. G. Moscovici, H. Jimenez, M. M. Lai, M. J. Hayman, and P. K. Vogt, Cell 11:95–103, 1977). Two independently maintained sublines of QT35 were found to be positive for Marek's disease virus (MDV)-like genes by Southern blotting and PCR assays. Sequence analysis of fragments of the ICP4, ICP22, ICP27, VP16, meq, pp14, pp38, open reading frame (ORF) L1, and glycoprotein B (gB) genes showed a strong homology with the corresponding fragments of MDV genes. Subsequently, a serotype 1 MDV-like herpesvirus, tentatively name QMDV, was rescued from QT35 cells in chicken kidney cell (CKC) cultures established from 6- to 9-day-old chicks inoculated at 8 days of embryonation with QT35 cells. Transmission electron microscopy failed to show herpesvirus particles in QT35 cells, but typical intranuclear herpesvirus particles were detected in CKCs. Reverse transcription-PCR analysis showed that the following QMDV transcripts were present in QT35 cells: sense and antisense meq, ORF L1, ICP4, and latency-associated transcripts, which are antisense to ICP4. A transcript of approximately 4.5 kb was detected by Northern blotting using total RNA from QT35 cells. Inoculation of QT35 cells with herpesvirus of turkeys (HVT)-infected chicken embryo fibroblasts (CEF) but not with uninfected CEF resulted in the activation of ICP22, ICP27, VP16, pp38, and gB. In addition, the level of ICP4 mRNA was increased compared to that in QT35 cells. The activation by HVT resulted in the production of pp38 protein. It was not possible to detect if the other activated genes were translated due to the lack of serotype 1-specific monoclonal antibodies.


2000 ◽  
Vol 20 (10) ◽  
pp. 3558-3567 ◽  
Author(s):  
Isabelle Mothe-Satney ◽  
Daqing Yang ◽  
Patrick Fadden ◽  
Timothy A. J. Haystead ◽  
John C. Lawrence

ABSTRACT Control of the translational repressor, PHAS-I, was investigated by expressing proteins with Ser/Thr → Ala mutations in the five (S/T)P phosphorylation sites. Results of experiments with HEK293 cells reveal at least three levels of control. At one extreme is nonregulated phosphorylation, exemplified by constitutive phosphorylation of Ser82. At an intermediate level, amino acids and insulin stimulate the phosphorylation of Thr36, Thr45, and Thr69 via mTOR-dependent processes that function independently of other sites in PHAS-I. At the third level, the extent of phosphorylation of one site modulates the phosphorylation of another. This control is represented by Ser64 phosphorylation, which depends on the phosphorylation of all three TP sites. The five sites have different influences on the electrophoretic properties of PHAS-I and on the affinity of PHAS-I for eukaryotic initiation factor 4E (eIF4E). Phosphorylation of Thr45 or Ser64 results in the most dramatic decreases in eIF4E binding in vitro. However, each of the sites influences mRNA translation, either directly by modulating the binding affinity of PHAS-I and eIF4E or indirectly by affecting the phosphorylation of other sites.


2016 ◽  
Author(s):  
Alex M. Tamburino ◽  
Ebru Kaymak ◽  
Shaleen Shrestha ◽  
Amy D. Holdorf ◽  
Sean P. Ryder ◽  
...  

SUMMARYInteractions between RNA binding protein (RBP) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using ‘protein-centered’ (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest – in a ‘gene-centered’ manner, yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA ‘bait’ can be tested versus multiple RBP ‘preys’ in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3′UTRs. PRIMA faithfully recapitulates numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1129-1138 ◽  
Author(s):  
Y.S. Lie ◽  
P.M. Macdonald

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3′ untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3′ untranslated region.


2008 ◽  
Vol 83 (5) ◽  
pp. 2298-2309 ◽  
Author(s):  
Verena Krähling ◽  
David A. Stein ◽  
Martin Spiegel ◽  
Friedemann Weber ◽  
Elke Mühlberger

ABSTRACT In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2α (eIF2α). In addition, two of the three cellular eIF2α kinases known to be virus induced, protein kinase R (PKR) and PKR-like endoplasmic reticulum kinase (PERK), were activated by SARS-CoV. The third kinase, general control nonderepressible-2 kinase (GCN2), was not activated, but late in infection the level of GCN2 protein was significantly reduced. Reverse transcription-PCR analyses revealed that the reduction of GCN2 protein was not due to decreased transcription or stability of GCN2 mRNA. The specific reduction of PKR protein expression by antisense peptide-conjugated phosphorodiamidate morpholino oligomers strongly reduced cleavage of PARP in infected cells. Surprisingly, the knockdown of PKR neither enhanced SARS-CoV replication nor abrogated SARS-CoV-induced eIF2α phosphorylation. Pretreatment of cells with beta interferon prior to SARS-CoV infection led to a significant decrease in PERK activation, eIF2α phosphorylation, and SARS-CoV replication. The various effects of beta interferon treatment were found to function independently on the expression of PKR. Our results show that SARS-CoV infection activates PKR and PERK, leading to sustained eIF2α phosphorylation. However, virus replication was not impaired by these events, suggesting that SARS-CoV possesses a mechanism to overcome the inhibitory effects of phosphorylated eIF2α on viral mRNA translation. Furthermore, our data suggest that viral activation of PKR can lead to apoptosis via a pathway that is independent of eIF2α phosphorylation.


2020 ◽  
Vol 375 (1795) ◽  
pp. 20190344 ◽  
Author(s):  
Lynne E. Maquat

Primate-specific Alu short interspersed nuclear elements (SINEs) and rodent-specific B and ID (B/ID) SINEs are non-autonomous and generally non-coding retrotransposons that have been copied and pasted into the respective genomes so as to constitute what is estimated to be a remarkable 13% and 8% of those genomes. In the context of messenger RNAs (mRNAs), those residing within 3′-untranslated regions (3′UTRs) can influence mRNA export from the nucleus to the cytoplasm, mRNA translation and/or mRNA decay via proteins with which they associate either individually or base-paired in cis or in trans with a partially complementary SINE. Each of these influences impinges on the primary function of mRNA, which is to serve as a template for protein synthesis. This review describes how human cells have used 3′UTR Alu elements to mediate post-transcriptional gene regulation and also describes examples of convergent evolution between human and mouse 3′UTR SINEs. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.


1988 ◽  
Vol 85 (24) ◽  
pp. 9503-9507 ◽  
Author(s):  
W. E. Walden ◽  
S. Daniels-McQueen ◽  
P. H. Brown ◽  
L. Gaffield ◽  
D. A. Russell ◽  
...  

2004 ◽  
Vol 186 (10) ◽  
pp. 3143-3152 ◽  
Author(s):  
Anne-Soisig Steunou ◽  
Soufian Ouchane ◽  
Françoise Reiss-Husson ◽  
Chantal Astier

ABSTRACT The facultative phototrophic nonsulfur bacterium Rubrivivax gelatinosus exhibits several differences from other species of purple bacteria in the organization of its photosynthetic genes. In particular, the puc operon contains only the pucB and pucA genes encoding the β and α polypeptides of the light-harvesting 2 (LH2) complex. Downstream of the pucBA operon is the pucC gene in the opposite transcriptional orientation. The transcription of pucBA and pucC has been studied. No pucC transcript was detected either by Northern blotting or by reverse transcription-PCR analysis. The initiation site of pucBA transcription was determined by primer extension, and Northern blot analysis revealed the presence of two transcripts of 0.8 and 0.65 kb. The half-lives of both transcripts are longer in cells grown semiaerobically than in photosynthetically grown cells, and the small transcript is the less stable. It was reported that the α polypeptide, encoded by the pucA gene, presents a C-terminal extension which is not essential for LH2 function in vitro. The biological role of this alanine- and proline-rich C-terminal extension in vivo has been investigated. Two mutants with C-terminal deletions of 13 and 18 residues have been constructed. Both present the two pucBA transcripts, while their phenotypes are, respectively, LH2+ and LH2−, suggesting that a minimal length of the C-terminal extension is required for LH2 biogenesis. Another important factor involved in the LH2 biogenesis is the PucC protein. To gain insight into the function of this protein in R. gelatinosus, we constructed and characterized a PucC mutant. The mutant is devoid of LH2 complex under semiaerobiosis but still produces a small amount of these antennae under photosynthetic growth conditions. This conditional phenotype suggests the involvement of another factor in LH2 biogenesis.


2003 ◽  
Vol 369 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Carsten B. ANDERSEN ◽  
Hiroshi SAKAUE ◽  
Taku NEDACHI ◽  
Kristina S. KOVACINA ◽  
Carol CLAYBERGER ◽  
...  

In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.


Development ◽  
2021 ◽  
pp. dev.196121
Author(s):  
Daisy J. Vinter ◽  
Caroline Hoppe ◽  
Thomas G. Minchington ◽  
Catherine Sutcliffe ◽  
Hilary L. Ashe

The Hunchback (Hb) transcription factor is critical for anterior-posterior patterning of the Drosophila embryo. Despite the maternal hb mRNA acting as a paradigm for translational regulation, due to its repression in the posterior of the embryo, little is known about the translatability of zygotically transcribed hb mRNAs. Here we adapt the SunTag system, developed for imaging translation at single mRNA resolution in tissue culture cells, to the Drosophila embryo to study the translation dynamics of zygotic hb mRNAs. Using single-molecule imaging in fixed and live embryos, we provide evidence for translational repression of zygotic SunTag-hb mRNAs. While the proportion of SunTag-hb mRNAs translated is initially uniform, translation declines from the anterior over time until it becomes restricted to a posterior band in the expression domain. We discuss how regulated hb mRNA translation may help establish the sharp Hb expression boundary, which is a model for precision and noise during developmental patterning. Overall, our data show how use of the SunTag method on fixed and live embryos is a powerful combination for elucidating spatiotemporal regulation of mRNA translation in Drosophila.


Sign in / Sign up

Export Citation Format

Share Document