Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation

Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1129-1138 ◽  
Author(s):  
Y.S. Lie ◽  
P.M. Macdonald

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3′ untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3′ untranslated region.

2015 ◽  
Vol 7 (6) ◽  
pp. 572-583 ◽  
Author(s):  
Clara McClure ◽  
Laura Brudecki ◽  
Zhi Q. Yao ◽  
Charles E. McCall ◽  
Mohamed El Gazzar

An anti-inflammatory phenotype with pronounced immunosuppression develops during sepsis, during which time neutrophils and monocytes/macrophages limit their Toll-like receptor 4 responses to bacterial lipopolysaccharide (LPS/endotoxin). We previously reported that during this endotoxin-tolerant state, distinct signaling pathways differentially repress transcription and translation of proinflammatory cytokines such as TNFα and IL-6. Sustained endotoxin tolerance contributes to sepsis mortality. While transcription repression requires chromatin modifications, a translational repressor complex of Argonaute 2 (Ago2) and RNA-binding motif protein 4 (RBM4), which bind the 3′-UTR of TNFα and IL-6 mRNA, limits protein synthesis. Here, we show that Dcp1 supports the assembly of the Ago2 and RBM4 repressor complex into cytoplasmic processing bodies (p-bodies) in endotoxin-tolerant THP-1 human monocytes following stimulation with LPS, resulting in translational repression and limiting protein synthesis. Importantly, this translocation process is reversed by Dcp1 knockdown, which restores TNFα and IL-6 protein levels. We also find this translational repression mechanism in primary macrophages of septic mice. Because p-body formation is a critical step in mRNA translation repression, we conclude that Dcp1 is a major component of the translational repression machinery of endotoxin tolerance and may contribute to sepsis outcome.


1996 ◽  
Vol 16 (6) ◽  
pp. 3023-3034 ◽  
Author(s):  
K Lee ◽  
M A Fajardo ◽  
R E Braun

Translation of the mouse protamine 1 (Prm-1) mRNA is repressed for several days during male germ cell differentiation. With the hope of cloning genes that regulate the translational repression of Prm-1, we screened male germ cell cDNA expression libraries with the 3' untranslated region of the Prm-1 RNA. From this screen we obtained two independent clones that encode Prbp, a Prm-1 RNA-binding protein. Prbp contains two copies of a double-stranded-RNA-binding domain. In vitro, the protein binds to a portion of the Prm-1 3' untranslated region previously shown to be sufficient for translational repression in transgenic mice, as well as to poly(I). poly(C). Prbp protein is present in multiple forms in cytoplasmic extracts prepared from wild-type mouse testes and is absent from testes of germ cell-deficient mouse mutants, suggesting that Prbp is restricted to the germ cells of the testis. Immunocytochemical localization confirmed that Prbp is present in the cytoplasmic compartment of late-stage meiotic cells and haploid round spermatids. Recombinant Prbp protein inhibits the translation of multiple mRNAs in a wheat germ lysate, suggesting that Prbp acts to repress translation in round spermatids. While this protein lacks complete specificity for Prm-1-containing RNAs in vitro, the properties of Prbp are consistent with it acting as a general repressor of translation.


2005 ◽  
Vol 25 (20) ◽  
pp. 9028-9039 ◽  
Author(s):  
Lucy J. Colegrove-Otero ◽  
Agathe Devaux ◽  
Nancy Standart

ABSTRACT Xenopus laevis Vg1 mRNA undergoes both localization and translational control during oogenesis. We previously characterized a 250-nucleotide AU-rich element, the Vg1 translation element (VTE), in the 3′-untranslated region (UTR) of this mRNA that is responsible for the translational repression. UV-cross-linking and immunoprecipitation experiments, described here, revealed that the known AU-rich element binding proteins, ElrA and ElrB, and TIA-1 and TIAR interact with the VTE. The levels of these proteins during oogenesis are most consistent with a possible role for ElrB in the translational control of Vg1 mRNA, and ElrB, in contrast to TIA-1 and TIAR, is present in large RNP complexes. Immunodepletion of TIA-1 and TIAR from Xenopus translation extract confirmed that these proteins are not involved in the translational repression. Mutagenesis of a potential ElrB binding site destroyed the ability of the VTE to bind ElrB and also abolished translational repression. Moreover, multiple copies of the consensus motif both bind ElrB and support translational control. Therefore, there is a direct correlation between ElrB binding and translational repression by the Vg1 3′-UTR. In agreement with the reporter data, injection of a monoclonal antibody against ElrB into Xenopus oocytes resulted in the production of Vg1 protein, arguing for a role for the ELAV proteins in the translational repression of Vg1 mRNA during early oogenesis.


1997 ◽  
Vol 17 (5) ◽  
pp. 2756-2763 ◽  
Author(s):  
B L Black ◽  
J Lu ◽  
E N Olson

Myocyte enhancer factor 2 (MEF2) proteins serve as important muscle transcription factors. In addition, MEF2 proteins have been shown to potentiate the activity of other cell-type-specific transcription factors found in muscle and brain tissue. While transcripts for MEF2 factors are widely expressed in a variety of cells and tissues, MEF2 proteins and binding activity are largely restricted to skeletal, smooth, and cardiac muscle and to brain. This disparity between MEF2 protein and mRNA expression suggests that translational control may play an important role in regulating MEF2 expression. In an effort to identify sequences within the MEF2A message which control translation, we isolated the mouse MEF2A 3' untranslated region (UTR) and fused it to the chloramphenicol acetyltransferase (CAT) reporter gene. Here, we show by CAT assay that the MEF2A 3' UTR dramatically inhibits CAT gene expression in vivo and that this inhibition is due to an internal region within the highly conserved 3' UTR. RNase protection analyses demonstrated that the steady-state level of CAT mRNA produced in vivo was not affected by fusion of the MEF2A 3' UTR, indicating that the inhibition of CAT activity resulted from translational repression. Furthermore, fusion of the MEF2A 3' UTR to CAT inhibited translation in vitro in rabbit reticulocyte lysates. We also show that the translational repression mediated by the 3' UTR of MEF2A is regulated during muscle cell differentiation. As muscle cells in culture differentiate, the translational inhibition caused by the MEF2A 3' UTR is relaxed. These results demonstrate that the MEF2A 3' UTR functions as a cis-acting translational repressor both in vitro and in vivo and suggest that this repression may contribute to the tissue-restricted expression and binding activity of MEF2A.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


2004 ◽  
Vol 279 (50) ◽  
pp. 52613-52622 ◽  
Author(s):  
Ilham Aliagaevich Muslimov ◽  
Volker Nimmrich ◽  
Alejandro Ivan Hernandez ◽  
Andrew Tcherepanov ◽  
Todd Charlton Sacktor ◽  
...  

Protein kinase Mζ (PKMζ) is an atypical protein kinase C isoform that has been implicated in the protein synthesis-dependent maintenance of long term potentiation and memory storage in the brain. Synapse-associated kinases are uniquely positioned to promote enduring consolidation of structural and functional modifications at the synapse, provided that kinase mRNA is available on site for local input-specific translation. We now report that the mRNA encoding PKMζ is rapidly transported and specifically localized to synaptodendritic neuronal domains. Transport of PKMζ mRNA is specified by two cis-acting dendritic targeting elements (Mζ DTEs). Mζ DTE1, located at the interface of the 5′-untranslated region and the open reading frame, directs somato-dendritic export of the mRNA. Mζ DTE2, in contrast, is located in the 3′-untranslated region and is required for delivery of the mRNA to distal dendritic segments. Colocalization with translational repressor BC1 RNA in hippocampal dendrites suggests that PKMζ mRNA may be subject to translational control in local domains. Dendritic localization of PKMζ mRNA provides a molecular basis for the functional integration of synaptic signal transduction and translational control pathways.


2000 ◽  
Vol 20 (10) ◽  
pp. 3558-3567 ◽  
Author(s):  
Isabelle Mothe-Satney ◽  
Daqing Yang ◽  
Patrick Fadden ◽  
Timothy A. J. Haystead ◽  
John C. Lawrence

ABSTRACT Control of the translational repressor, PHAS-I, was investigated by expressing proteins with Ser/Thr → Ala mutations in the five (S/T)P phosphorylation sites. Results of experiments with HEK293 cells reveal at least three levels of control. At one extreme is nonregulated phosphorylation, exemplified by constitutive phosphorylation of Ser82. At an intermediate level, amino acids and insulin stimulate the phosphorylation of Thr36, Thr45, and Thr69 via mTOR-dependent processes that function independently of other sites in PHAS-I. At the third level, the extent of phosphorylation of one site modulates the phosphorylation of another. This control is represented by Ser64 phosphorylation, which depends on the phosphorylation of all three TP sites. The five sites have different influences on the electrophoretic properties of PHAS-I and on the affinity of PHAS-I for eukaryotic initiation factor 4E (eIF4E). Phosphorylation of Thr45 or Ser64 results in the most dramatic decreases in eIF4E binding in vitro. However, each of the sites influences mRNA translation, either directly by modulating the binding affinity of PHAS-I and eIF4E or indirectly by affecting the phosphorylation of other sites.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 659-669 ◽  
Author(s):  
S.E. Bergsten ◽  
E.R. Gavis

Patterning of the anterior-posterior body axis during Drosophila development depends on the restriction of Nanos protein to the posterior of the early embryo. Synthesis of Nanos occurs only when maternally provided nanos RNA is localized to the posterior pole by a large, cis-acting signal in the nanos 3′ untranslated region (3′UTR); translation of unlocalized nanos RNA is repressed by a 90 nucleotide Translational Control Element (TCE), also in the 3′UTR. We now show quantitatively that the majority of nanos RNA in the embryo is not localized to the posterior pole but is distributed throughout the cytoplasm, indicating that translational repression is the primary mechanism for restricting production of Nanos protein to the posterior. Through an analysis of transgenes bearing multiple copies of nanos 3′UTR regulatory sequences, we provide evidence that localization of nanos RNA by components of the posteriorly localized germ plasm activates its translation by preventing interaction of nanos RNA with translational repressors. This mutually exclusive relationship between translational repression and RNA localization is mediated by a 180 nucleotide region of the nanos localization signal, containing the TCE. These studies suggest that the ability of RNA localization to direct wild-type body patterning also requires recognition of multiple, unique elements within the nanos localization signal by novel factors. Finally, we propose that differences in the efficiencies with which different RNAs are localized result from the use of temporally distinct localization pathways during oogenesis.


2000 ◽  
Vol 279 (4) ◽  
pp. E715-E729 ◽  
Author(s):  
O. Jameel Shah ◽  
Joshua C. Anthony ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

Maintenance of cellular protein stores in skeletal muscle depends on a tightly regulated synthesis-degradation equilibrium that is conditionally modulated under an extensive range of physiological and pathophysiological circumstances. Recent studies have established the initiation phase of mRNA translation as a pivotal site of regulation for global rates of protein synthesis, as well as a site through which the synthesis of specific proteins is controlled. The protein synthetic pathway is exquisitely sensitive to the availability of hormones and nutrients and employs a comprehensive integrative strategy to interpret the information provided by hormonal and nutritional cues. The translational repressor, eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and the 70-kDa ribosomal protein S6 kinase (S6K1) have emerged as important components of this strategy, and together they coordinate the behavior of both eukaryotic initiation factors and the ribosome. This review discusses the role of 4E-BP1 and S6K1 in translational control and outlines the mechanisms through which hormones and nutrients effect changes in mRNA translation through the influence of these translational effectors.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1775-1785 ◽  
Author(s):  
E.P. Robbie ◽  
M. Peterson ◽  
E. Amaya ◽  
T.J. Musci

Early frog embryogenesis depends on a maternal pool of mRNA to execute critical intercellular signalling events. FGF receptor-1, which is required for normal development, is stored as a stable, untranslated maternal mRNA transcript in the fully grown immature oocyte, but is translationally activated at meiotic maturation. We have identified a short cis-acting element in the FGF receptor 3′ untranslated region that inhibits translation of synthetic mRNA. This inhibitory element is sufficient to inhibit translation of heterologous reporter mRNA in the immature oocyte without changing RNA stability. Deletion of the poly(A) tract or polyadenylation signal sequences does not affect translational inhibition by this element. At meiotic maturation, we observe the reversal of translational repression mediated by the inhibitory element, mimicking that seen with endogenous maternal FGF receptor mRNA at meiosis. In addition, the activation of synthetic transcripts at maturation does not appear to require poly(A) lengthening. We also show that an oocyte cytoplasmic protein specifically binds the 3′ inhibitory element, suggesting that translational repression of Xenopus FGF receptor-1 maternal mRNA in the oocytes is mediated by RNA-protein interactions. These data describe a mechanism of translational control that appears to be independent of poly(A) changes.


Sign in / Sign up

Export Citation Format

Share Document