scholarly journals Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine

2013 ◽  
Vol 453 (3) ◽  
pp. 447-454 ◽  
Author(s):  
Liu Xue ◽  
Shurong Hou ◽  
Min Tong ◽  
Lei Fang ◽  
Xiabin Chen ◽  
...  

Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE has a low catalytic activity against cocaine. We recently designed and discovered a BChE mutant (A199S/F227A/S287G/A328W/Y332G) with a high catalytic activity (kcat=5700 min−1, Km=3.1 μM) specifically for cocaine, and the mutant was proven effective in protecting mice from acute cocaine toxicity of a lethal dose of cocaine (180 mg/kg of body weight, LD100). Further characterization in animal models requires establishment of a high-efficiency stable cell line for the BChE mutant production at a relatively larger scale. It has been extremely challenging to develop a high-efficiency stable cell line expressing BChE or its mutant. In the present study, we successfully developed a stable cell line efficiently expressing the BChE mutant by using a lentivirus-based repeated-transduction method. The scaled-up protein production enabled us to determine for the first time the in vivo catalytic activity and the biological half-life of this high-activity mutant of human BChE in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant (administered to mice 1 min prior to cocaine) can quickly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment.

2006 ◽  
Vol 98 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Xavier Z. Khawaja ◽  
Deborah L. Smith ◽  
Stanley P. Nawoschik ◽  
Jean Zhang ◽  
John Dunlop ◽  
...  

2020 ◽  
Vol 94 (18) ◽  
Author(s):  
Wenming Zhao ◽  
Charbel Akkawi ◽  
Marylène Mougel ◽  
Susan R. Ross

ABSTRACT Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) family members are cytidine deaminases that play important roles in intrinsic responses to retrovirus infection. Complex retroviruses like human immunodeficiency virus type 1 (HIV-1) encode the viral infectivity factor (Vif) protein to counteract APOBEC3 proteins. Vif induces degradation of APOBEC3G and other APOBEC3 proteins and thereby prevents their packaging into virions. It is not known if murine leukemia virus (MLV) encodes a Vif-like protein. Here, we show that the MLV P50 protein, produced from an alternatively spliced gag RNA, interacts with the C terminus of mouse APOBEC3 and prevents its packaging without causing its degradation. By infecting APOBEC3 knockout (KO) and wild-type (WT) mice with Friend or Moloney MLV P50-deficient viruses, we found that APOBEC3 restricts the mutant viruses more than WT viruses in vivo. Replication of P50-mutant viruses in an APOBEC3-expressing stable cell line was also much slower than that of WT viruses, and overexpressing P50 in this cell line enhanced mutant virus replication. Thus, MLV encodes a protein, P50, that overcomes APOBEC3 restriction by preventing its packaging into virions. IMPORTANCE MLV has existed in mice for at least a million years, in spite of the existence of host restriction factors that block infection. Although MLV is considered a simple retrovirus compared to lentiviruses, it does encode proteins generated from alternatively spliced RNAs. Here, we show that P50, generated from an alternatively spliced RNA encoded in gag, counteracts APOBEC3 by blocking its packaging. MLV also encodes a protein, glycoGag, that increases capsid stability and limits APOBEC3 access to the reverse transcription complex (RTC). Thus, MLV has evolved multiple means of preventing APOBEC3 from blocking infection, explaining its survival as an infectious pathogen in mice.


2013 ◽  
Vol 91 (4) ◽  
pp. 292-299 ◽  
Author(s):  
Bayardo E. Velasco ◽  
Gustavo López-Téllez ◽  
Nelly González-Rivas ◽  
Iván García-Orozco ◽  
Erick Cuevas-Yañez

Diverse dithioic acid copper complexes exhibit a high catalytic activity in the copper-catalyzed alkyne–azide cycloaddition using several solvents under different temperatures, showing a high efficiency with only 0.005 mmol catalyst/mmol alkyne or less. A dithioic acid copper complex derived from acetophenone was selected and used as the catalyst in the preparation of a library of 1,4-disubstituted-1,2,3-triazoles. This process occurred in high yields and good functional group tolerance.


RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78441-78447 ◽  
Author(s):  
Phan Huy Hoang ◽  
Bach Nguyen Xuan

The magnetically recyclable ZSM-5 zeolite (MZZ) with high catalytic activity, high efficiency in separation, recycling and long lifetime for epoxide isomerization reaction was presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Leticia Eligio-García ◽  
Elida Pontifez-Pablo ◽  
Salúd Pérez-Gutiérrez ◽  
Enedina Jiménez-Cardoso

A variety of drugs are used in giardiasis treatment with different levels of efficiency, presence of side effects, and even formation of resistant strains, so that it is important to search new only-one-dose treatments with high efficiency and less side effects. Kramecyne, an anti-inflammatory compound isolated from methanolic extract ofKrameria cytisoides, does not present toxicity, even at doses of 5,000 mg/kg. The objective was to determine the antigiardial effect of kramecyne overGiardia intestinalis in vitroandin vivoand analyze the expression of genes ERK1, ERK2, and AK on kramecyne treated trophozoites by Real Time Polymerase Chain Reaction (RTPCR). The median lethal dose (LD50) was 40 μg/mL and no morphological changes were observed by staining with blue trypan and light microscopy; experimental gerbil infection was eliminated with 320 μg/Kg of weight. After treatment there were no differences between intestines from treated and untreated gerbils. Kramecyne did not have significant effect over ERK1 and AK, but there are differences in ERK2 expression (p=0.04). Results show antigiardial activity of kramecyne; however the mode of action is still unclear and the evaluation of ultrastructural damage and expressed proteins is an alternative of study to understand the action mechanism.


2021 ◽  
Author(s):  
Jianguo liu ◽  
Jiangmin Sun ◽  
Longlong Ma

The development of high efficiency, excellent selectivity, and super activity metal catalyst for chemical selective hydrogenation of alkynes to olefin is of great significance in the field of the chemical industry. At the same time, the development of a large number of available base metal catalysts for organic conversion remains an important objective of chemical research. Herein, we report a facile preparation of a simple, high catalytic activity, environmentally friendly, and inexpensive biomass carbon material supported nano-nickel catalyst from lignin residue. The entire preparation process of the catalyst is simple, reliable, economical, and environmentally friendly, which provides a potential utilization prospect for large-scale industrial applications of biomass-based carbon material catalysts. Biomass-based lignin residues can not only reduce the high oxidation state of nickel ions into nickel nanoparticles by the in-situ reducing gas generated during the calcination process, but the mesoporous structure of lignin residue also promotes the adsorption of nickel metal, which greatly improved the catalytic activity of biomass-based Ni-based catalysts. The simple synthetic green, cost-effective and sustainable biomass-based Ni-based catalyst shows good performance in the selective hydrogenation of phenylacetylene, reaching 97.2% conversion and 84.3% styrene selectivity, respectively.


2019 ◽  
Vol 55 (29) ◽  
pp. 4218-4221 ◽  
Author(s):  
Lingxi Zhou ◽  
Meichen Guo ◽  
Yao Li ◽  
Qin Gu ◽  
Wenqian Zhang ◽  
...  

A series of wire-in-plate nanostructured electrocatalysts for OER with high catalytic activity were fabricated.


Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 392 ◽  
Author(s):  
Marcos Mateo-Fernández ◽  
Pilar Alves-Martínez ◽  
Mercedes Del Río-Celestino ◽  
Rafael Font ◽  
Tania Merinas-Amo ◽  
...  

Nutraceutical activity of food is analysed to promote the healthy characteristics of diet where additives are highly used. Caramel is one of the most worldwide consumed additives and it is produced by heating natural carbohydrates. The aim of this study was to evaluate the food safety and the possible nutraceutical potential of caramel colour class IV (CAR). For this purpose, in vivo toxicity/antitoxicity, genotoxicity/antigenotoxicity and longevity assays were performed using the Drosophila melanogaster model. In addition, cytotoxicity, internucleosomal DNA fragmentation, single cell gel electrophoresis and methylation status assays were conducted in the in vitro HL-60 human leukaemia cell line. Our results reported that CAR was neither toxic nor genotoxic and showed antigenotoxic effects in Drosophila. Furthermore, CAR induced cytotoxicity and hipomethylated sat-α repetitive element using HL-60 cell line. In conclusion, the food safety of CAR was demonstrated, since Lethal Dose 50 (LD50) was not reached in toxicity assay and any of the tested concentrations induced mutation rates higher than that of the concurrent control in D. melanogaster. On the other hand, CAR protected DNA from oxidative stress provided by hydrogen peroxide in Drosophila. Moreover, CAR showed chemopreventive activity and modified the methylation status of HL-60 cell line. Nevertheless, much more information about the mechanisms of gene therapies related to epigenetic modulation by food is necessary.


Sign in / Sign up

Export Citation Format

Share Document