scholarly journals Uridylate trapping, induction of UTP deficiency, and stimulation of pyrimidine synthesis de novo by d-galactosone

1982 ◽  
Vol 206 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Dietrich O. R. Keppler ◽  
Christa Schulz-Holstege ◽  
Joachim Fauler ◽  
Karl A. Reiffen ◽  
Friedhelm Schneider

d-Galactosone (d-lyxo-2-hexosulose) is phosphorylated and metabolized to the uridine diphosphate derivative in AS-30D hepatoma cells and rat liver. These reactions were catalysed in vitro by galactokinase and hexose-1-phosphate uridylyltransferase. Nucleotide analyses by high-performance liquid chromatography and enzymic assays revealed that this galactose analogue interferes with cellular pyrimidine nucleotide metabolism leading to a deficiency of UTP. [14C]Uridine labelling of hepatoma cells indicated a division of [14C]uridylate from UTP into UDP-galactosone; the latter was formed at a rate of more than 1.7mmol×h−1×(kg AS-30D or liver wet wt.)−1. As a consequence of UTP deficiency, d-galactosone (1mmol/1 or 1mmol/kg body wt.) strongly enhanced the rate of pyrimidine synthesis de novo as evidenced by incorporation of 14CO2 into uridylate and by an expansion of the uridylate pool. This resulted in a doubling of the total acid-soluble uridylate pool within 70min in the hepatoma cells and within 110min in rat liver. Combined treatment of hepatoma cells with d-galactosone and N-(phosphonoacetyl)-l-aspartate, an inhibitor of aspartate carbamoyltransferase, prevented the expansion of the uridylate pool and led to a synergistic reduction of UTP to 10% of the content in control cells. Hepatic UTP deficiency was selective with respect to other nucleotide 5′-triphosphates but was associated with reduced contents of UDP-glucose, UDP-glucuronate, and UDP-N-acetylhexosamines. Isolation of the UDP derivative of d-galactosone revealed an extremely alkali-labile UDP-sugar, probably an isomerization product of UDP-galactosone, that was degraded by elimination of UDP with a half-life of 45min at pH7.5 and 37°C. The instability of UDP-galactosone may contribute in vivo to limit the time period of severe uridine phosphate deficiency in addition to the compensatory role of pyrimidine synthesis de novo. During the initial time period, however, d-galactosone is effective as a powerful uridylate-trapping sugar analogue.

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i12-i13
Author(s):  
Diana D Shi ◽  
Adam C Wang ◽  
Michael M Levitt ◽  
Jennifer E Endress ◽  
Min Xu ◽  
...  

Abstract 70–90% of lower-grade gliomas and secondary glioblastomas harbor gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1), causing overproduction of the oncometabolite (R)-2-hydroxyglutarate [(R)-2HG]. Although inhibitors of mutant IDH enzymes are effective in other cancers, including leukemia, they have shown guarded efficacy in preclinical and clinical brain tumor studies, thus underscoring the need to identify additional therapeutic targets in IDH mutant glioma. We sought to identify tumor-specific metabolic vulnerabilities induced by IDH1 mutations that could be exploited therapeutically. To uncover such vulnerabilities, we conducted a chemical synthetic lethality screen using isogenic IDH1 mutant and IDH1 wild-type (WT) glioma cell lines and a novel metabolic inhibitor screening platform. We discovered that IDH1 mutant cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). This vulnerability is specific because inhibitors of purine nucleotide metabolism did not score in our screen. We validated that the cytotoxicity of pyrimidine synthesis inhibitors is on-target and showed that IDH1 mutant patient-derived glioma stem-like cell lines are also hyperdependent on de novo pyrimidine nucleotide synthesis compared to IDH1 WT lines. To test pyrimidine synthesis dependence of IDH1 mutant gliomas in vivo, we used a brain-penetrent DHODH inhibitor currently undergoing evaluation in leukemia patients, BAY 2402234. We found that BAY 2402234 displays monotherapy activity against gliomas in an orthotopic xenograft model of IDH1 mutant glioma, with an effect size that compared favorably with radiotherapy. We also developed novel genetically engineered and allograft mouse models of mutant IDH1-driven anaplastic astrocytoma and showed that BAY 2402234 blocked growth of orthotopic astrocytoma allografts. Our findings bolster rationale to target DHODH in glioma, highlight BAY 2402234 as a clinical-stage drug that can be used to inhibit DHODH in brain tumors, and establish IDH1 mutations as predictive biomarkers of DHODH inhibitor efficacy.


2021 ◽  
Author(s):  
Hans-Georg Sprenger ◽  
Thomas MacVicar ◽  
Amir Bahat ◽  
Kai Uwe Fiedler ◽  
Steffen Hermans ◽  
...  

AbstractCytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP–AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS–STING–TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS–STING–TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


2021 ◽  
Author(s):  
Leo Bellin ◽  
Michael Melzer ◽  
Alexander Hilo ◽  
Diana Laura Garza Amaya ◽  
Isabel Keller ◽  
...  

ABSTRACTDe novo synthesis of pyrimidines is an essential and highly conserved pathway in all organisms. A peculiarity in plants is the localization of the first committed step, catalyzed by aspartate transcarbamoylase (ATC), in chloroplasts. By contrast, the third step in the pathway is catalyzed by dihydroorotate dehydrogenase (DHODH) localized in mitochondria in eukaryotes, including plants. To unravel pathway- and organelle specific functions, we analyzed knock-down mutants in ATC and DHODH in detail. ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine metabolites, a low energy state, reduced photosynthetic capacity and accumulated reactive oxygen species (ROS). Furthermore, we observed altered leaf morphology and chloroplast ultrastructure in the mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Our results point to an integration of de novo pyrimidine synthesis and cellular energy states via photosynthesis and mitochondrial respiration. These findings highlight the likelihood of further regulatory roles for ATC and DHODH in pathways located in the corresponding organelles.ONE-SENTENCE SUMMARYImpaired pyrimidine nucleotide synthesis results in a low energy state, affecting photosynthesis and organellar ultrastructure, thus leading to reduced growth, reproduction, and seed yield


1993 ◽  
Vol 293 (1) ◽  
pp. 207-213 ◽  
Author(s):  
W R Pels Rijcken ◽  
B Overdijk ◽  
D H van den Eijnden ◽  
W Ferwerda

Pyrimidine nucleotide metabolism in rat hepatocytes was studied by measurement of the labelling kinetics of the various intermediates after double labelling with [14C]orotic acid and [3H]cytidine, the precursors for the de novo and the salvage pathways respectively. For the uridine nucleotides, differences were found for the 14C/3H ratios in the UDP-sugars, in UMP (of RNA) and in their precursor UTP, suggesting the existence of separated flows of the radioactive precursors through the de novo and the salvage pathways. Higher ratios in the UDP-sugars, which are synthesized in the cytoplasm, and a lower ratio in UMP (of RNA) relative to the 14C/3H ratio in UTP indicated that UTP derived from orotic acid is preferentially used for the cytoplasmic biosynthesis of the UDP-sugars. Uridine, derived from cytidine, is preferentially used for the nuclear-localized synthesis of RNA. In contrast to these findings, the 14C/3H ratios in the cytidine derivatives CMP-NeuAc and CMP (of RNA), and in the liponucleotides CDP-choline and CDP-ethanolamine, were all lower than that in the precursor CTP. This indicates a preferential utilization of the salvage-derived CTP for the synthesis of the liponucleotides as well as for RNA and CMP-NeuAc. Similar conclusions could be drawn from experiments in which the intracellular amounts of several uridine- and cytidine-nucleotide-containing derivatives were increased by preincubating the hepatocytes with unlabelled pyrimidine nucleotides or ethanolamine. Based on these data, we propose a refined model for the intracellular compartmentation of pyrimidine nucleotide biosynthesis in which three pools of UTP are distinguished: a pool of de novo-derived molecules and a pool of salvage-derived molecules, both of which are channelled to the site of utilization; in addition an ‘overflow’ pool exists, consisting of molecules having escaped from channelling. An overflow pool could also be distinguished for CTP, but no discrimination between de novo and salvage-derived molecules could be made.


2019 ◽  
Vol 11 (504) ◽  
pp. eaau4972 ◽  
Author(s):  
Xiuxing Wang ◽  
Kailin Yang ◽  
Qiulian Wu ◽  
Leo J. Y. Kim ◽  
Andrew R. Morton ◽  
...  

Glioblastoma stem cells (GSCs) reprogram glucose metabolism by hijacking high-affinity glucose uptake to survive in a nutritionally dynamic microenvironment. Here, we trace metabolic aberrations in GSCs to link core genetic mutations in glioblastoma to dependency on de novo pyrimidine synthesis. Targeting the pyrimidine synthetic rate-limiting step enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) or the critical downstream enzyme dihydroorotate dehydrogenase (DHODH) inhibited GSC survival, self-renewal, and in vivo tumor initiation through the depletion of the pyrimidine nucleotide supply in rodent models. Mutations in EGFR or PTEN generated distinct CAD phosphorylation patterns to activate carbon influx through pyrimidine synthesis. Simultaneous abrogation of tumor-specific driver mutations and DHODH activity with clinically approved inhibitors demonstrated sustained inhibition of metabolic activity of pyrimidine synthesis and GSC tumorigenic capacity in vitro. Higher expression of pyrimidine synthesis genes portends poor prognosis of patients with glioblastoma. Collectively, our results demonstrate a therapeutic approach of precision medicine through targeting the nexus between driver mutations and metabolic reprogramming in cancer stem cells.


2019 ◽  
Vol 316 (5) ◽  
pp. E852-E865 ◽  
Author(s):  
Juulia H. Lautaoja ◽  
Maciej Lalowski ◽  
Tuuli A. Nissinen ◽  
Jaakko Hentilä ◽  
Yi Shi ◽  
...  

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups representing 1) amino acids, 2) energy sources, and 3) nucleotide-related intermediates. Muscle metabolomics revealed increased content of free phenylalanine in cancer that strongly correlated with the loss of body mass within the last 2 days of the experiment. This correlation was also detected in serum. Decreased ribosomal RNA content and phosphorylation of a marker of pyrimidine synthesis revealed changes in nucleotide metabolism in cancer. Overall, the effect of the experimental C26 cancer predominated over blocking ACVR2B ligands in both muscle and serum. However, the level of methyl phosphate, which was decreased in muscle in cancer, was restored by sACVR2B-Fc treatment. In conclusion, experimental cancer affected muscle and blood metabolomes mostly independently of blocking ACVR2B ligands. Of the affected metabolites, we have identified free phenylalanine as a promising biomarker of muscle atrophy or cachexia. Finally, the decreased capacity for pyrimidine nucleotide and protein synthesis in tumor-bearing mice opens up new avenues in cachexia research.


1989 ◽  
Vol 261 (3) ◽  
pp. 979-983 ◽  
Author(s):  
Z Szondy ◽  
E A Newsholme

The maximum catalytic activities of carbamoyl-phosphate synthase II, a limiting enzyme for pyrimidine nucleotide synthesis, are very much less than those of glutaminase, a limiting enzyme for glutamine utilization, in lymphocytes and macrophages; and the flux through the pathway for pyrimidine formation de novo is only about 0.4% of the rate of glutamine utilization by lymphocytes. The Km of synthase II for glutamine is about 16 microM and the concentration of glutamine necessary to stimulate lymphocyte proliferation half-maximally is about 21 microM. This agreement suggests that the importance of glutamine for these cells is provision of nitrogen for biosynthesis of pyrimidine nucleotides (and probably purine nucleotides). However, the glutamine concentration necessary for half-maximal stimulation of glutamine utilization (glutaminolysis) by the lymphocytes is 2.5 mM. The fact that the rate of glutamine utilization by lymphocytes is markedly in excess of the rate of the pathway for pyrimidine nucleotide synthesis de novo and that the Km and ‘half-maximal concentration’ values are so different, suggests that the glutaminolytic pathway is independent of the use of glutamine nitrogen for pyrimidine synthesis.


2021 ◽  
Vol 5 (2) ◽  
pp. 438-450
Author(s):  
Kensuke Kayamori ◽  
Yurie Nagai ◽  
Cheng Zhong ◽  
Satoshi Kaito ◽  
Daisuke Shinoda ◽  
...  

Abstract Dihydroorotate dehydrogenase (DHODH) catalyzes a rate-limiting step in de novo pyrimidine nucleotide synthesis. DHODH inhibition has recently been recognized as a potential new approach for treating acute myeloid leukemia (AML) by inducing differentiation. We investigated the efficacy of PTC299, a novel DHODH inhibitor, for myelodysplastic syndrome (MDS). PTC299 inhibited the proliferation of MDS cell lines, and this was rescued by exogenous uridine, which bypasses de novo pyrimidine synthesis. In contrast to AML cells, PTC299 was inefficient at inhibiting growth and inducing the differentiation of MDS cells, but synergized with hypomethylating agents, such as decitabine, to inhibit the growth of MDS cells. This synergistic effect was confirmed in primary MDS samples. As a single agent, PTC299 prolonged the survival of mice in xenograft models using MDS cell lines, and was more potent in combination with decitabine. Mechanistically, a treatment with PTC299 induced intra-S-phase arrest followed by apoptotic cell death. Of interest, PTC299 enhanced the incorporation of decitabine, an analog of cytidine, into DNA by inhibiting pyrimidine production, thereby enhancing the cytotoxic effects of decitabine. RNA-seq data revealed the marked downregulation of MYC target gene sets with PTC299 exposure. Transfection of MDS cell lines with MYC largely attenuated the growth inhibitory effects of PTC299, suggesting MYC as one of the major targets of PTC299. Our results indicate that the DHODH inhibitor PTC299 suppresses the growth of MDS cells and acts in a synergistic manner with decitabine. This combination therapy may be a new therapeutic option for the treatment of MDS.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 3052-3058 ◽  
Author(s):  
Stefanie Dragon ◽  
Rainer Hille ◽  
Robert Götz ◽  
Rosemarie Baumann

Terminally differentiating erythrocytes degrade most of their RNA with subsequent release of mononucleotides. Pyrimidine mononucleotides are preferentially cleaved by an erythrocyte-specific pyrimidine 5′-nucleotidase; deficiency of this enzyme causes hemolytic anemia in humans. Details of the regulation of its activity during erythroid differentiation are unknown. The present study arose from the observation that the immature red blood cells (RBCs) of mid-term chick embryos contain high concentrations of uridine 5′-triphosphate (UTP) (5 to 6 mmol/L), which decline rapidly from days 13 to 14 onward. We analyzed two key enzymes of RBC pyrimidine nucleotide metabolism: pyrimidine nucleoside phosphorylase (PNP) and pyrimidine 5′-nucleotidase (P-5′-N), to evaluate if changes of enzyme activity during embryonic development are correlated with changes of RBC UTP. Secondly, we tested if these enzymes are under hormonal control. The results show that embryonic RBCs contain only minimal activity of PNP. In contrast, P-5′-N increases from day 13 on, suggesting that the enzyme is a limiting factor in UTP degradation. Activation of β-adrenergic and A2A-adenosine receptors causes transcription-dependent de novo synthesis of P-5′-N. Because β-adrenergic and adenosine receptors are also found on adult erythroid cells, P-5′-N might be an enzyme of differentiating RBCs whose expression is in part controlled by adenosine 3′:5′-cyclic monophosphate (cAMP).


Sign in / Sign up

Export Citation Format

Share Document