scholarly journals Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand blockade

2019 ◽  
Vol 316 (5) ◽  
pp. E852-E865 ◽  
Author(s):  
Juulia H. Lautaoja ◽  
Maciej Lalowski ◽  
Tuuli A. Nissinen ◽  
Jaakko Hentilä ◽  
Yi Shi ◽  
...  

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups representing 1) amino acids, 2) energy sources, and 3) nucleotide-related intermediates. Muscle metabolomics revealed increased content of free phenylalanine in cancer that strongly correlated with the loss of body mass within the last 2 days of the experiment. This correlation was also detected in serum. Decreased ribosomal RNA content and phosphorylation of a marker of pyrimidine synthesis revealed changes in nucleotide metabolism in cancer. Overall, the effect of the experimental C26 cancer predominated over blocking ACVR2B ligands in both muscle and serum. However, the level of methyl phosphate, which was decreased in muscle in cancer, was restored by sACVR2B-Fc treatment. In conclusion, experimental cancer affected muscle and blood metabolomes mostly independently of blocking ACVR2B ligands. Of the affected metabolites, we have identified free phenylalanine as a promising biomarker of muscle atrophy or cachexia. Finally, the decreased capacity for pyrimidine nucleotide and protein synthesis in tumor-bearing mice opens up new avenues in cachexia research.

1982 ◽  
Vol 206 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Dietrich O. R. Keppler ◽  
Christa Schulz-Holstege ◽  
Joachim Fauler ◽  
Karl A. Reiffen ◽  
Friedhelm Schneider

d-Galactosone (d-lyxo-2-hexosulose) is phosphorylated and metabolized to the uridine diphosphate derivative in AS-30D hepatoma cells and rat liver. These reactions were catalysed in vitro by galactokinase and hexose-1-phosphate uridylyltransferase. Nucleotide analyses by high-performance liquid chromatography and enzymic assays revealed that this galactose analogue interferes with cellular pyrimidine nucleotide metabolism leading to a deficiency of UTP. [14C]Uridine labelling of hepatoma cells indicated a division of [14C]uridylate from UTP into UDP-galactosone; the latter was formed at a rate of more than 1.7mmol×h−1×(kg AS-30D or liver wet wt.)−1. As a consequence of UTP deficiency, d-galactosone (1mmol/1 or 1mmol/kg body wt.) strongly enhanced the rate of pyrimidine synthesis de novo as evidenced by incorporation of 14CO2 into uridylate and by an expansion of the uridylate pool. This resulted in a doubling of the total acid-soluble uridylate pool within 70min in the hepatoma cells and within 110min in rat liver. Combined treatment of hepatoma cells with d-galactosone and N-(phosphonoacetyl)-l-aspartate, an inhibitor of aspartate carbamoyltransferase, prevented the expansion of the uridylate pool and led to a synergistic reduction of UTP to 10% of the content in control cells. Hepatic UTP deficiency was selective with respect to other nucleotide 5′-triphosphates but was associated with reduced contents of UDP-glucose, UDP-glucuronate, and UDP-N-acetylhexosamines. Isolation of the UDP derivative of d-galactosone revealed an extremely alkali-labile UDP-sugar, probably an isomerization product of UDP-galactosone, that was degraded by elimination of UDP with a half-life of 45min at pH7.5 and 37°C. The instability of UDP-galactosone may contribute in vivo to limit the time period of severe uridine phosphate deficiency in addition to the compensatory role of pyrimidine synthesis de novo. During the initial time period, however, d-galactosone is effective as a powerful uridylate-trapping sugar analogue.


2011 ◽  
Vol 16 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Ying Shi ◽  
Yong Li Bao ◽  
Yin Wu ◽  
Chun Lei Yu ◽  
Yan Xin Huang ◽  
...  

It has been suggested that deregulation of activin signaling contributes to tumor formation. Activin signaling is blocked in cancer cells due to the complex formed by Cripto-1, activin, and activin receptor type II (ActRII). In this study, the authors used a mammalian two-hybrid system to construct a drug screening model to obtain a small molecular inhibitor capable of interrupting the interaction between Cripto-1 and ActRII. They screened 300 natural components and identified alantolactone. Data suggested that alantolactone induced activin/SMAD3 signaling in human colon adenocarcinoma HCT-8 cells. The authors also found that alantolactone exhibited antiproliferative function specific to tumor cells, with almost no toxicity to normal cells at a concentration of 5 µg/mL. Furthermore, they proved that the antiproliferative function of alantolactone was activin/SMAD3 dependent. These results suggest that alantolactone performs its antitumor effect by interrupting the interaction between Cripto-1 and the activin receptor type IIA in the activin signaling pathway. Moreover, screening for inhibitors of Cripto-1/ActRII is a potentially beneficial approach to aid in discovering novel cancer treatment.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i12-i13
Author(s):  
Diana D Shi ◽  
Adam C Wang ◽  
Michael M Levitt ◽  
Jennifer E Endress ◽  
Min Xu ◽  
...  

Abstract 70–90% of lower-grade gliomas and secondary glioblastomas harbor gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1), causing overproduction of the oncometabolite (R)-2-hydroxyglutarate [(R)-2HG]. Although inhibitors of mutant IDH enzymes are effective in other cancers, including leukemia, they have shown guarded efficacy in preclinical and clinical brain tumor studies, thus underscoring the need to identify additional therapeutic targets in IDH mutant glioma. We sought to identify tumor-specific metabolic vulnerabilities induced by IDH1 mutations that could be exploited therapeutically. To uncover such vulnerabilities, we conducted a chemical synthetic lethality screen using isogenic IDH1 mutant and IDH1 wild-type (WT) glioma cell lines and a novel metabolic inhibitor screening platform. We discovered that IDH1 mutant cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). This vulnerability is specific because inhibitors of purine nucleotide metabolism did not score in our screen. We validated that the cytotoxicity of pyrimidine synthesis inhibitors is on-target and showed that IDH1 mutant patient-derived glioma stem-like cell lines are also hyperdependent on de novo pyrimidine nucleotide synthesis compared to IDH1 WT lines. To test pyrimidine synthesis dependence of IDH1 mutant gliomas in vivo, we used a brain-penetrent DHODH inhibitor currently undergoing evaluation in leukemia patients, BAY 2402234. We found that BAY 2402234 displays monotherapy activity against gliomas in an orthotopic xenograft model of IDH1 mutant glioma, with an effect size that compared favorably with radiotherapy. We also developed novel genetically engineered and allograft mouse models of mutant IDH1-driven anaplastic astrocytoma and showed that BAY 2402234 blocked growth of orthotopic astrocytoma allografts. Our findings bolster rationale to target DHODH in glioma, highlight BAY 2402234 as a clinical-stage drug that can be used to inhibit DHODH in brain tumors, and establish IDH1 mutations as predictive biomarkers of DHODH inhibitor efficacy.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1799 ◽  
Author(s):  
Satu Pekkala ◽  
Anniina Keskitalo ◽  
Emilia Kettunen ◽  
Sanna Lensu ◽  
Noora Nykänen ◽  
...  

Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.


2021 ◽  
Author(s):  
Hans-Georg Sprenger ◽  
Thomas MacVicar ◽  
Amir Bahat ◽  
Kai Uwe Fiedler ◽  
Steffen Hermans ◽  
...  

AbstractCytosolic mitochondrial DNA (mtDNA) elicits a type I interferon response, but signals triggering the release of mtDNA from mitochondria remain enigmatic. Here, we show that mtDNA-dependent immune signalling via the cyclic GMP–AMP synthase‒stimulator of interferon genes‒TANK-binding kinase 1 (cGAS–STING–TBK1) pathway is under metabolic control and is induced by cellular pyrimidine deficiency. The mitochondrial protease YME1L preserves pyrimidine pools by supporting de novo nucleotide synthesis and by proteolysis of the pyrimidine nucleotide carrier SLC25A33. Deficiency of YME1L causes inflammation in mouse retinas and in cultured cells. It drives the release of mtDNA and a cGAS–STING–TBK1-dependent inflammatory response, which requires SLC25A33 and is suppressed upon replenishment of cellular pyrimidine pools. Overexpression of SLC25A33 is sufficient to induce immune signalling by mtDNA. Similarly, depletion of cytosolic nucleotides upon inhibition of de novo pyrimidine synthesis triggers mtDNA-dependent immune responses in wild-type cells. Our results thus identify mtDNA release and innate immune signalling as a metabolic response to cellular pyrimidine deficiencies.


Author(s):  
Mohammad Reza. Shiran ◽  
Davar Amani ◽  
Abolghasem Ajami ◽  
Mahshad Jalalpourroodsari ◽  
Maghsoud Khalizadeh ◽  
...  

Abstract Objectives Breast cancer is a common malignant tumor in women with limited treatment options and multiple side effects. Today, the anti-cancer properties of natural compounds have attracted widespread attention from researchers worldwide. Methods In this study, we treated 4T1 tumor-bearing Balb/c mice with intraperitoneal injection of Auraptene, paraffin oil, and saline as two control groups. Body weight and tumor volume were measured before and after treatment. Hematoxylin and eosin (H & E) staining and immunohistochemistry of Ki-67 were used as markers of proliferation. In addition, ELISA assays were performed to assess serum IFN-γ and IL-4 levels. Results There was no significant change in body weight in all animal groups before and after treatment. 10 days after the last treatment, Auraptene showed its anti-cancer effect, which was confirmed by the smaller tumor volume and H & E staining. In addition, Ki-67 expression levels were significantly reduced in tumor samples from the Auraptene-treated group compared to the paraffin oil and saline-treated groups. In addition, in tumor-bearing and normal mice receiving Auraptene treatment, IL-4 serum production levels were reduced, while serum levels of IFN-γ were significantly up-regulated in tumor-bearing mice after Auraptene treatment. Conclusions In the case of inhibition of tumor volume and Ki-67 proliferation markers, Auraptene can effectively inhibit tumor growth in breast cancer animal models. In addition, it might increases Th1 and CD8 + T cell responses after reducing IL-4 serum levels and IFN-γ upregulation, respectively. However, further research is needed to clarify its mechanism of action.


2003 ◽  
Vol 160 (11) ◽  
pp. 1271-1295 ◽  
Author(s):  
Claudio Stasolla ◽  
Riko Katahira ◽  
Trevor A. Thorpe ◽  
Hiroshi Ashihara

1990 ◽  
Vol 172 (4) ◽  
pp. 1217-1224 ◽  
Author(s):  
B Gansbacher ◽  
K Zier ◽  
B Daniels ◽  
K Cronin ◽  
R Bannerji ◽  
...  

To study the effects of localized secretion of cytokines on tumor progression, the gene for human interleukin 2 (IL-2) was introduced via retroviral vectors into CMS-5 cells, a weakly immunogenic mouse fibrosarcoma cell line of BALB/c origin. Secretion of low levels of IL-2 from the tumor cells abrogated their tumorigenicity and induced a long-lasting protective immune response against a challenge with a tumorigenic dose of parental CMS-5 cells. Co-injection of IL-2-producing CMS-5 cells with unmodified tumor cells inhibited tumor formation even when highly tumorigenic doses of CMS-5 cells were used. Cytolytic activity in mice injected with parental CMS-5 cells was transient and was greatly diminished 3 wk after injection, as commonly observed in tumor-bearing animals. However, in mice injected with IL-2-producing cells, tumor-specific cytolytic activity persisted at high levels for the duration of the observation period (at least 75 d). High levels of tumor-specific cytolytic activity could also be detected in parental CMS-5 tumor-bearing animals 18 d after inoculation with tumor cells, if IL-2-producing CMS-5 cells but not unmodified parental tumor cells were used as targets. These studies highlight the potential advantages of localized secretion of cytokines mediated via gene transfer to induce potent anti-tumor immune responses.


Sign in / Sign up

Export Citation Format

Share Document