scholarly journals Sensitivity to insulin of glycolysis and glycogen synthesis of isolated soleus-muscle strips from sedentary, exercised and exercise-trained rats

1983 ◽  
Vol 212 (2) ◽  
pp. 453-458 ◽  
Author(s):  
J Espinal ◽  
G L Dohm ◽  
E A Newsholme

The half-maximal stimulation of the rates of glycolysis and glycogen synthesis in soleus-muscle strips from sedentary animals occurred at a concentration of insulin of about 100 microunits/ml. In soleus-muscle strips from exercise-trained rats (5 weeks of treadmill training), half-maximal stimulation of the rate of glycolysis occurred at about 10 microunits of insulin/ml, whereas that for glycogen synthesis occurred between 10 and 100 microunits of insulin/ml. The sensitivity of glycolysis to insulin after exercise training is similar to that of adipose tissue from sedentary animals. This finding suggests that, in sedentary animals, the effects of normal changes in insulin concentration may affect muscle primarily indirectly via the anti-lipolytic effect on adipose tissue, whereas after training insulin may effect the rate of glycolysis in muscle directly. A single period of exercise did not change the sensitivity of glycolysis in soleus muscle to insulin, nor probably that of glycogen synthesis. It is suggested that the improvement in insulin sensitivity of glycolysis in muscle caused by exercise-training could account, in part, for the well-established improvement in glucose tolerance and insulin sensitivity observed in man and rats after exercise-training.

1987 ◽  
Vol 252 (1) ◽  
pp. F138-F145 ◽  
Author(s):  
T. A. Davis ◽  
S. Klahr ◽  
I. E. Karl

Insulin resistance has been demonstrated in chronic renal failure patients and may be improved by exercise training, but the mechanisms have not been identified. In this study, the response of glucose uptake, glycogen synthesis, and glucose utilization via glycolysis (glycolytic utilization) to stimulation by insulin and/or acute exercise were determined in isolated muscles from rats with moderate renal insufficiency that were exercise trained or remained sedentary. Moderate renal insufficiency had no effect on the basal rate, insulin sensitivity, or insulin responsiveness of glucose uptake, glycogen synthesis, or glycolytic utilization in muscle. The enhanced insulin responsiveness of both glycogen synthesis and glucose uptake following acute exercise, noted in control animals, was less in rats with moderate renal insufficiency, but the enhanced basal rate and insulin sensitivity after exercise were unaffected by moderate renal insufficiency. Exercise training increased the insulin sensitivity and responsiveness of muscle glucose uptake and glycolytic utilization in rats with moderate renal insufficiency and in controls. The effects of acute exercise and exercise training on insulin responsiveness of glucose uptake were additive in controls but not in animals with moderate renal insufficiency. These findings are compatible with the concept that moderate renal insufficiency is associated with a postreceptor defect in insulin's action in muscle, detectable only following maximal stimulation of glucose transport by insulin and exercise, and partially correctable by exercise training.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2020 ◽  
Vol 318 (5) ◽  
pp. E590-E599 ◽  
Author(s):  
Tania Romacho ◽  
Henrike Sell ◽  
Ira Indrakusuma ◽  
Diana Roehrborn ◽  
Tamara R. Castañeda ◽  
...  

Besides a therapeutic target for type 2 diabetes, dipeptidyl peptidase 4 (DPP4) is an adipokine potentially upregulated in human obesity. We aimed to explore the role of adipocyte-derived DPP4 in diet-induced obesity and insulin resistance with an adipose tissue-specific knockout (AT-DPP4-KO) mouse. Wild-type and AT-DPP4-KO mice were fed for 24 wk with a high fat diet (HFD) and characterized for body weight, glucose tolerance, insulin sensitivity by hyperinsulinemic-euglycemic clamp, and body composition and hepatic fat content. Image and molecular biology analysis of inflammation, as well as adipokine secretion, was performed in AT by immunohistochemistry, Western blot, real-time-PCR, and ELISA. Incretin levels were determined by Luminex kits. Under HFD, AT-DPP4-KO displayed markedly reduced circulating DPP4 concentrations, proving AT as a relevant source. Independently of glucose-stimulated incretin hormones, AT-DPP4-KO had improved glucose tolerance and hepatic insulin sensitivity. AT-DPP4-KO displayed smaller adipocytes and increased anti-inflammatory markers. IGF binding protein 3 (IGFBP3) levels were lower in AT and serum, whereas free IGF1 was increased. The absence of adipose DPP4 triggers beneficial AT remodeling with decreased production of IGFBP3 during HFD, likely contributing to the observed, improved hepatic insulin sensitivity.


2014 ◽  
Vol 55 (3) ◽  
pp. 516-523 ◽  
Author(s):  
Willeke de Haan ◽  
Alpana Bhattacharjee ◽  
Piers Ruddle ◽  
Martin H. Kang ◽  
Michael R. Hayden

Endocrinology ◽  
2020 ◽  
Vol 161 (10) ◽  
Author(s):  
Jonathan H Kahn ◽  
Anna Goddi ◽  
Aishwarya Sharma ◽  
Joshua Heiman ◽  
Alanis Carmona ◽  
...  

Abstract The Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) is a nuclear corepressor, regulating the transcriptional activity of many transcription factors critical for metabolic processes. While the importance of the role of SMRT in the adipocyte has been well-established, our comprehensive understanding of its in vivo function in the context of homeostatic maintenance is limited due to contradictory phenotypes yielded by prior generalized knockout mouse models. Multiple such models agree that SMRT deficiency leads to increased adiposity, although the effects of SMRT loss on glucose tolerance and insulin sensitivity have been variable. We therefore generated an adipocyte-specific SMRT knockout (adSMRT-/-) mouse to more clearly define the metabolic contributions of SMRT. In doing so, we found that SMRT deletion in the adipocyte does not cause obesity—even when mice are challenged with a high-fat diet. This suggests that adiposity phenotypes of previously described models were due to effects of SMRT loss beyond the adipocyte. However, an adipocyte-specific SMRT deficiency still led to dramatic effects on systemic glucose tolerance and adipocyte insulin sensitivity, impairing both. This metabolically deleterious outcome was coupled with a surprising immune phenotype, wherein most genes differentially expressed in the adipose tissue of adSMRT-/- mice were upregulated in pro-inflammatory pathways. Flow cytometry and conditioned media experiments demonstrated that secreted factors from knockout adipose tissue strongly informed resident macrophages to develop a pro-inflammatory, MMe (metabolically activated) phenotype. Together, these studies suggest a novel role for SMRT as an integrator of metabolic and inflammatory signals to maintain physiological homeostasis.


1983 ◽  
Vol 3 (7) ◽  
pp. 675-679 ◽  
Author(s):  
R. A. J. Challiss ◽  
J. Espinal ◽  
E. A. Newsholme

The effect of insulin concentrations on the rates of glycolysis and glycogen synthesis in four different in vitro rat muscle preparations (intact soleus, stripped soleus, epitrochlearis, and hemi-diaphragm) were investigated: the concentrations of insulin that produced half-maximal stimulation of the rates of these two processes in the four muscle preparations were similar – about 100 μunits/ml. This is at least 10-fold greater than the concentration that produced half-maximal inhibition of lipolysis in isolated adipocytes. Since 100 μunits/ml insulin is outside the normal physiological range in the rat, it is suggested that, in vivo, insulin influences glucose utilization in muscle mainly indirectly, via changes in the plasma fatty acid levels and the ‘glucose/fatty acid cycle’. Consequently the view that insulin stimulates glucose utilization in muscle mainly by a direct effect on membrane transport must be treated with caution.


2008 ◽  
Vol 33 (4) ◽  
pp. 769-774 ◽  
Author(s):  
Jennifer L. Kuk ◽  
Katherine Kilpatrick ◽  
Lance E. Davidson ◽  
Robert Hudson ◽  
Robert Ross

The relationship between skeletal muscle mass, visceral adipose tissue, insulin sensitivity, and glucose tolerance was examined in 214 overweight or obese, but otherwise healthy, men (n = 98) and women (n = 116) who participated in various exercise and (or) weight-loss intervention studies. Subjects had a 75 g oral glucose tolerance test and (or) insulin sensitivity measures by a 3 h hyperinsulinemic–euglycemic clamp technique. Whole-body skeletal muscle mass and visceral adipose tissue were measured using a multi-slice magnetic resonance imaging protocol. Total body skeletal muscle mass was not associated with any measure of glucose metabolism in men or women (p > 0.10). These observations remained independent of age and total adiposity. Conversely, visceral adipose tissue was a significant predictor of various measures of glucose metabolism in both men and women with or without control for age and (or) total body fat (p < 0.05). Although skeletal muscle is a primary site for glucose uptake and deposition, these findings suggest that unlike visceral adipose tissue, whole-body skeletal muscle mass per se is not associated with either glucose tolerance or insulin sensitivity in overweight and obese men and women.


2013 ◽  
Vol 38 (4) ◽  
pp. 427-430 ◽  
Author(s):  
Steven K. Malin ◽  
Barry Braun

Metformin attenuates the higher insulin sensitivity that occurs with exercise training. Sixteen people with prediabetes trained for 10 weeks while taking metformin (n = 8) or placebo (n = 8). Substrate utilization was assessed using glucose kinetics and indirect calorimetry. After training, exercise whole-body fat oxidation was higher and glycogen use lower (p < 0.05), with no differences between groups. Blood glucose use was unchanged. Training-induced enhancement of insulin sensitivity (clamp) correlated with higher peak oxygen uptake (r = 0.70; p < 0.05), but was independent of glucose kinetic and substrate metabolism.


2001 ◽  
pp. 273-280 ◽  
Author(s):  
M Straczkowski ◽  
I Kowalska ◽  
S Dzienis-Straczkowska ◽  
A Stepien ◽  
E Skibinska ◽  
...  

OBJECTIVE: Tumor necrosis factor-alpha (TNFalpha) plays an important role in the pathogenesis of insulin resistance and type 2 diabetes. Plasma levels of the soluble (s) fractions of TNFalpha receptors, especially sTNFR2, are good indicators of TNFalpha system activation in obesity. The aim of the present study was to assess the effect of exercise training on the TNFalpha system and to evaluate the relationship with changes in insulin sensitivity. DESIGN AND METHODS: Sixteen obese women (body mass index (BMI)>27.8 kg/m(2)), 8 with normal (NGT) and 8 with impaired glucose tolerance (IGT), participated in an exercise training program which lasted for 12 weeks and included exercise performed on a bicycle ergometer at an individual intensity of 70% maximal heart rate, for 30 min, 5 days a week. Anthropometrical measurements and blood biochemical analyses were performed, and plasma TNFalpha, sTNFR1 and sTNFR2 levels were assessed. Insulin sensitivity was evaluated using the hyperinsulinemic euglycemic clamp technique (insulin infusion: 50 mU x kg(-1)xh(-1)). RESULTS: At baseline, despite similar anthropometrical parameters, IGT subjects were markedly more insulin resistant and had higher TNFalpha and sTNFR2 concentrations. Exercise training increased insulin sensitivity and decreased TNFalpha and sTNFR2 levels, while sTNFR1 remained unchanged. The decrease in sTNFR2 was significantly related to the increase in insulin sensitivity; that relationship remained significant after adjustment for the concurrent changes in BMI, waist circumference, percentage of body fat, plasma glucose, insulin and free fatty acids. CONCLUSIONS: Regular physical exercise decreases TNFalpha system activity and that decrease may be responsible for the concurrent increase in insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document