scholarly journals Effect of a protein-free diet on muscle protein turnover and nitrogen conservation in euthyroid and hyperthyroid rats

1984 ◽  
Vol 217 (2) ◽  
pp. 471-476 ◽  
Author(s):  
W J Carter ◽  
W S van der Weijden Benjamin ◽  
F H Faas

Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3.

2009 ◽  
Vol 106 (6) ◽  
pp. 2026-2039 ◽  
Author(s):  
Vinod Kumar ◽  
Philip Atherton ◽  
Kenneth Smith ◽  
Michael J. Rennie

Skeletal muscle demonstrates extraordinary mutability in its responses to exercise of different modes, intensity, and duration, which must involve alterations of muscle protein turnover, both acutely and chronically. Here, we bring together information on the alterations in the rates of synthesis and degradation of human muscle protein by different types of exercise and the influences of nutrition, age, and sexual dimorphism. Where possible, we summarize the likely changes in activity of signaling proteins associated with control of protein turnover. Exercise of both the resistance and nonresistance types appears to depress muscle protein synthesis (MPS), whereas muscle protein breakdown (MPB) probably remains unchanged during exercise. However, both MPS and MPB are elevated after exercise in the fasted state, when net muscle protein balance remains negative. Positive net balance is achieved only when amino acid availability is increased, thereby raising MPS markedly. However, postexercise-increased amino acid availability is less important for inhibiting MPB than insulin, the secretion of which is stimulated most by glucose availability, without itself stimulating MPS. Exercise training appears to increase basal muscle protein turnover, with differential responses of the myofibrillar and mitochondrial protein fractions to acute exercise in the trained state. Aging reduces the responses of myofibrillar protein and anabolic signaling to resistance exercise. There appear to be few, if any, differences in the response of young women and young men to acute exercise, although there are indications that, in older women, the responses may be blunted more than in older men.


Author(s):  
Kevin J. M. Paulussen ◽  
Rafael A. Alamilla ◽  
Amadeo F. Salvador ◽  
Colleen F. McKenna ◽  
Andrew T. Askow ◽  
...  

Leucine is regarded as an anabolic trigger for the mTORC1 pathway and the stimulation muscle protein synthesis rates. More recently, there has been an interest in underpinning the relevance of BCAA-containing dipeptides and their intact absorption into circulation to regulate muscle anabolic responses. We investigated the effects of dileucine and leucine ingestion on postprandial muscle protein turnover. Ten healthy young men (age: 23±3 y) consumed either 2 g of leucine (LEU) or 2 g of dileucine (DILEU) in a randomized crossover design. The participants underwent repeated blood and muscle biopsy sampling during primed continuous infusions of L-[ring-13C6]phenylalanine and L-[15N]phenylalanine to determine myofibrillar protein synthesis (MPS) and mixed muscle protein breakdown rates (MPB), respectively. LEU and DILEU similarly increased plasma leucine net area under the curve (AUC; P = 0.396). DILEU increased plasma dileucine AUC to a greater extent than LEU (P = 0.013). Phosphorylation of Akt (P = 0.002), rpS6 (P <0.001) and p70S6K (P < 0.001) increased over time in both LEU and DILEU conditions. Phosphorylation of 4E-BP1 (P = 0.229) and eEF2 (P = 0.999) did not change over time irrespective of condition. Cumulative (0-180 min) MPS increased in DILEU (0.075±0.032 %⋅hour-1), but not in LEU (0.047±0.029 %⋅hour-1; P=0.023). MPB did not differ between LEU (0.043±0.030 %⋅h-1) and DILEU conditions (0.051±0.027 %⋅hour-1; P = 0.659). Our results showed that dileucine ingestion elevated plasma dileucine concentrations and muscle protein turnover by stimulating MPS in young men.


2009 ◽  
Vol 106 (5) ◽  
pp. 1692-1701 ◽  
Author(s):  
Nicholas A. Burd ◽  
Jason E. Tang ◽  
Daniel R. Moore ◽  
Stuart M. Phillips

Muscle contraction during exercise, whether resistive or endurance in nature, has profound affects on muscle protein turnover that can persist for up to 72 h. It is well established that feeding during the postexercise period is required to bring about a positive net protein balance (muscle protein synthesis − muscle protein breakdown). There is mounting evidence that the timing of ingestion and the protein source during recovery independently regulate the protein synthetic response and influence the extent of muscle hypertrophy. Minor differences in muscle protein turnover appear to exist in young men and women; however, with aging there may be more substantial sex-based differences in response to both feeding and resistance exercise. The recognition of anabolic signaling pathways and molecules are also enhancing our understanding of the regulation of protein turnover following exercise perturbations. In this review we summarize the current understanding of muscle protein turnover in response to exercise and feeding and highlight potential sex-based dimorphisms. Furthermore, we examine the underlying anabolic signaling pathways and molecules that regulate these processes.


1986 ◽  
Vol 240 (3) ◽  
pp. 651-657 ◽  
Author(s):  
T A Davis ◽  
I E Karl

To determine whether the enhanced insulin-sensitivity of glucose metabolism in muscle after acute exercise also extends to protein metabolism, untrained and exercise-trained rats were subjected to an acute bout of exercise, and the responses of protein synthesis and degradation to insulin were measured in epitrochlearis muscles in vitro. Acute exercise of both untrained and trained rats decreased protein synthesis in muscle in the absence or presence of insulin, but protein degradation was not altered. Exercise training alone had no effect on protein synthesis or degradation in muscle in the absence or presence of insulin. Acute exercise or training alone enhanced the sensitivities of both protein synthesis and degradation to insulin, but the enhanced insulin-sensitivities from training alone were not additive to those after acute exercise. These results indicate that: a decrease in protein synthesis is the primary change in muscle protein turnover after acute exercise and is not altered by prior exercise training, and the enhanced insulin-sensitivities of metabolism of both glucose and protein after either acute exercise or training suggest post-binding receptor events.


1995 ◽  
Vol 268 (3) ◽  
pp. E514-E520 ◽  
Author(s):  
G. Biolo ◽  
S. P. Maggi ◽  
B. D. Williams ◽  
K. D. Tipton ◽  
R. R. Wolfe

The rates of protein synthesis and degradation and of amino acid transport were determined in the leg muscle of untrained postabsorptive normal volunteers at rest and approximately 3 h after a resistance exercise routine. The methodology involved use of stable isotopic tracers of amino acids, arteriovenous catheterization of the femoral vessels, and biopsy of the vastus lateralis muscle. During postexercise recovery, the rate of intramuscular phenylalanine utilization for protein synthesis increased above the basal value by 108 +/- 18%, whereas the rate of release from proteolysis increased by 51 +/- 17%. Muscle protein balance improved (P < 0.05) after exercise but did not become positive (from -15 +/- 12 to -6 +/- 3 nmol phenylalanine.min-1.100 ml leg volume-1). After exercise, rates of inward transport of leucine, lysine, and alanine increased (P < 0.05) above the basal state from 132 +/- 16 to 208 +/- 29, from 122 +/- 8 to 260 +/- 8, and from 384 +/- 71 to 602 +/- 89 nmol.min-1.100 ml leg-1, respectively. Transport of phenylalanine did not change significantly. These results indicate that, during recovery after resistance exercise, muscle protein turnover is increased because of an acceleration of synthesis and degradation. A postexercise acceleration of amino acid transport may contribute to the relatively greater stimulation of protein synthesis.


2001 ◽  
Vol 12 (3) ◽  
pp. 557-567
Author(s):  
GIACOMO GARIBOTTO ◽  
ANTONELLA SOFIA ◽  
ALBERTO CANEPA ◽  
STEFANO SAFFIOTI ◽  
PAOLO SACCO ◽  
...  

Abstract. Whether changes in substrate and insulin levels that occur during peritoneal dialysis (PD) have effects on muscle protein dynamics was evaluated by studying muscle protein synthesis (PS), breakdown (PB), and net protein balance (NB) by the forearm perfusion method associated with the kinetics of 3H-phenylalanine in acute, crossover studies in which PD patients served as their own controls. Studies were performed (1) in the basal state and during PD with dialysates that contained dextrose alone in different concentrations (protocol 1: eight patients), (2) during PD with dialysates that contained dextrose alone or dextrose and amino acids (AA) (protocol 2: five patients), and (3) in time controls (five patients). PD with dextrose alone induced (1) a two- to threefold increase in insulin, as well as a 20 to 25% decrease in AA, mainly BCAA, levels; (2) an insulin-related decline (-18%) in forearm PB (P<0.002); (3) a 20% decrease in muscle PS (P<0.04), which was related to arterial BCAA and K+ (P<0.02 to 0.05); (4) a persistent negative NB; and (5) a decrease in the efficiency of muscle protein turnover, expressed as the ratio NB/PB. PD with dextrose+AA versus PD with dextrose induced (1) similarly high insulin levels but with a significant increase in total arterial AA (+30 to 110%), mainly valine; (2) a reduced release of AA from muscle (P<0.05); and (3) a decrease in the negative NB observed during PD with dextrose, owing to an increase (approximately 20%) in muscle PS, without any further effect on muscle PB. This study indicates that in PD patients in the fasting state, the moderate hyperinsulinemia that occurs during PD with dextrose alone causes an antiproteolytic action that is obscured by a parallel decrease in AA availability for PS. Conversely, the combined use of dextrose and AA results in a cumulative effect, because of the suppression of endogenous muscle PB (induced by insulin) and the stimulation of muscle PS (induced by AA availability). The hypothesis, therefore, is that in patients who are treated with PD, when fasting or when nutrient intake is reduced, muscle mass could be maintained better by the combined use of dextrose and AA.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Williamson ◽  
Daniel R. Moore

Muscle protein is constantly “turning over” through the breakdown of old/damaged proteins and the resynthesis of new functional proteins, the algebraic difference determining net muscle gain, maintenance, or loss. This turnover, which is sensitive to the nutritional environment, ultimately determines the mass, quality, and health of skeletal muscle over time. Intermittent fasting has become a topic of interest in the health community as an avenue to improve health and body composition primarily via caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated daily insulin response. However, this approach belies the established anti-catabolic effect of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the primary regulated turnover variable in healthy humans, is stimulated by the consumption of dietary amino acids, a process that is saturated at a moderate protein intake. While limited research has explored the effect of intermittent fasting on muscle-related outcomes, we propose that infrequent meal feeding and periods of prolonged fasting characteristic of models of intermittent fasting may be counter-productive to optimizing muscle protein turnover and net muscle protein balance. The present commentary will discuss the regulation of muscle protein turnover across fasted and fed cycles and contrast it with studies exploring how dietary manipulation alters the partitioning of fat and lean body mass. It is our position that intermittent fasting likely represents a suboptimal dietary approach to remodel skeletal muscle, which could impact the ability to maintain or enhance muscle mass and quality, especially during periods of reduced energy availability.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Michela Saio ◽  
Antonella Sofia ◽  
Rodolfo Russo ◽  
Leda Cipriani ◽  
Giacomo Garibotto ◽  
...  

Abstract Background and Aims Skeletal muscle is a highly adaptive tissue, however even small imbalances between protein synthesis and degradation can lead to substantial protein loss. Althought proteolysis plays a major role in the development of cachexia in CKD (chronic kidney disease), the responses of muscle protein metabolism to malnutrition had not been completely elucidated. We evaluated retrospectively the results of kinetic studies of protein turnover estimated by the forearm perfusion method associated with H2phenylalanine kinetic, obtained in CKD patients and controls in the last 25 years. Method We analyzed 59 forearm H2phenylalanine kinetic studies obtained in 14 controls (C) (M 11, F 3) and 45 patients with CKD, of whom 15 (M 10, F 5) were on conservative treatment (CKD stage IV-V), 16 (M 14, F 2) under maintenance hemodialysis (HD), 14 (M 12, F 2) in peritoneal dialysis (DP); all subjects were on non-restricted protein/calorie (0.8-1.1 g/kg and 28-32 kcal/kg, respectively) diets. Ten (M 9, F 1) HD patients had Protein Energy Wasting. Acidosis was corrected in all patients (HCO3 24.2±1.9 mmol/L) and studies were performed in the post-absorptive overnight fasted state at rest. Results Overall, Muscle protein synthesis and degradation were similar (p=NS) in patients and controls. Protein net balance was reduced in patients with PD and those with CKD Stage IV-V (p &lt;0.003 - p &lt;0.014) indicating a reduced catabolic state and nitrogen conservation. However PEW HD patients showed reduced rates of protein synthesis and degradation (p &lt;0.048 and p &lt;0.04 respectively). In addition the efficiency of muscle protein turnover, a parameter expressing muscle's ability to reuse amino acids derived from degradation into protein synthesis, was significantly reduced in HD PEW patients vs. controls (55.5 vs. 61.2 %, p &lt;0.018, respectively) and vs. not malnourished patients in conservative treatment (70.1 % p &lt;0.0025) or in PD (74.6 % p &lt;0.005). Conclusion In CKD patients, in absence of acidosis, muscle is able to increase the efficiency of protein metabolism for the maintenance of nitrogen balance. However, in PEW patients, combined alterations of protein synthesis and degradation proceed together to a reduced efficiency of amino acids recycled into protein synthesis and contribute to maintaining wasting. These data also suggest that calorie/protein requirements of CKD patients with PEW may be higher than currently theorized.


Biomolecules ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 229 ◽  
Author(s):  
Natália Angelo da Silva Miyaguti ◽  
Sarah Christine Pereira de Oliveira ◽  
Maria Cristina Cintra Gomes-Marcondes

Cachexia syndrome can affect cancer patients and new prevention strategies are required. Maternal nutritional supplementation can modify metabolic programming in the offspring, which lasts until adulthood. This could be a good approach against diseases such as cancer. A 3% leucine-rich diet treatment improved muscle protein turnover by modifying the mTOR and proteolytic pathways, thus we analysed whether maternal supplementation could ameliorate muscle protein turnover in adult offspring tumour-bearing rats. Pregnant Wistar rats received a control diet or 3% leucine-rich diet during pregnancy/lactation, and their weaned male offspring received a control diet until adulthood when they were distributed into following groups (n = 7–8 per group): C, Control; W, tumour-bearing; L, without tumour with a maternal leucine-rich diet; and WL, tumour-bearing with a maternal leucine-rich diet. Protein synthesis and degradation were assessed in the gastrocnemius muscle, focusing on the mTOR pathway, which was extensively altered in W group. However, the WL adult offspring showed no decrease in muscle weight, higher food intake, ameliorated muscle turnover, activated mTOR and p70S6K, and maintained muscle cathepsin H and calpain activities. Maternal leucine nutritional supplementation could be a positive strategy to improve muscle protein balance in cancer cachexia-induced muscle damage in adult offspring rats.


1990 ◽  
Vol 268 (3) ◽  
pp. 795-797 ◽  
Author(s):  
P A MacLennan ◽  
R H T Edwards

mdx mice lack the protein dystrophin, the absence of which causes Duchenne muscular dystrophy in humans. To examine how mdx mice maintain muscle mass despite dystrophin deficiency, we measured protein turnover rates in muscles of mdx and wild-type (C57BL/10) mice in vivo. At all ages studied, rates of muscle protein synthesis and degradation were higher in mdx than in C57BL/10 mice.


Sign in / Sign up

Export Citation Format

Share Document