scholarly journals Interaction of plasmin with endothelial cells

1984 ◽  
Vol 218 (1) ◽  
pp. 119-124 ◽  
Author(s):  
P I Bauer ◽  
R Machovich ◽  
K G Büki ◽  
E Csonka ◽  
S A Koch ◽  
...  

Interaction of human plasmin with a monolayer culture of mini-pig aortic endothelial cells was studied by using the 125I-labelled enzyme. The binding of plasmin was time- and concentration-dependent. Equilibrium between bound and free enzyme was obtained within 90s, and Scatchard analysis indicated a high- and a low-affinity population of binding sites of approx. 1.24 × 10(4) sites/cell having a Kd of 1.4 × 10(-9) M and 7.2 × 10(4) sites/cell with a Kd of 2 × 10(-8) M respectively. Plasmin, bound to cell, was spontaneously released within 2 min, suggesting a rapid equilibrium. Chemical modification of the enzyme with phenylmethanesulphonyl fluoride or pyridoxal 5′-phosphate revealed that neither the active centre nor the heparin-binding site of plasmin was involved in the interaction with the endothelial cell. In terms of endothelial-cell receptors, the binding sites of cells for plasmin and thrombin were different: the two enzymes did not compete with each other, and the pretreatment of cells with neuraminidase or chondroitin ABC lyase resulted in a 50% decrease of thrombin or plasmin binding respectively. Arachidonic acid incorporated into phospholipids of the cell was released by plasmin, but a change in the rate of prostacyclin formation was not measurable. The interaction of plasmin with endothelial cells seems to be specific in the fibrinolytic system, since plasminogen did not bind to these cells under similar conditions.

Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 368-372 ◽  
Author(s):  
PT Bauer ◽  
R Machovich ◽  
P Aranyi ◽  
KG Buki ◽  
E Csonka ◽  
...  

Abstract The interaction of human alpha-thrombin with mini-pig aortic endothelial cells was studied using 125I-labeled enzyme. Equilibrium between bound and free thrombin was attained within 1 min, and the Klotz-Hunston equations indicated two populations of binding sites. Approximately 30,000 sites/cell belonged to the high-affinity class with a Kd of about 3 x 10(-8) M. Modification of two lysine residues of thrombin with pyridoxal 5′-phosphate (PLP2-thrombin) destroyed the high- affinity binding and about three-fourths of the low-affinity bindings. When the lysine residue of thrombin involved in heparin binding was protected with heparin against chemical modification (PLP-thrombin), the modified enzyme remained similar to the native one with respect to cellular binding, with some loss of low-affinity binding only. Heparin, in a tenfold molar excess to enzyme, inhibited the binding of the native as well as the PLP-thrombin, whereas it did not influence the interaction between PLP2-thrombin and the cell. Since heparin might interfere with both the enzyme and the cell, the binding of heparin to endothelial cells was also examined. The results revealed that 3H- heparin also bound to cells. This binding was characterized by a Kd of 3 x 10(-7) M, approximately 10(6) sites/cell. Furthermore, thrombin bound to endothelial cells was released by antithrombin III. On the basis of these and other data in the literature, a model is proposed for the mechanism of the binding of thrombin to endothelial cells.


Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 368-372
Author(s):  
PT Bauer ◽  
R Machovich ◽  
P Aranyi ◽  
KG Buki ◽  
E Csonka ◽  
...  

The interaction of human alpha-thrombin with mini-pig aortic endothelial cells was studied using 125I-labeled enzyme. Equilibrium between bound and free thrombin was attained within 1 min, and the Klotz-Hunston equations indicated two populations of binding sites. Approximately 30,000 sites/cell belonged to the high-affinity class with a Kd of about 3 x 10(-8) M. Modification of two lysine residues of thrombin with pyridoxal 5′-phosphate (PLP2-thrombin) destroyed the high- affinity binding and about three-fourths of the low-affinity bindings. When the lysine residue of thrombin involved in heparin binding was protected with heparin against chemical modification (PLP-thrombin), the modified enzyme remained similar to the native one with respect to cellular binding, with some loss of low-affinity binding only. Heparin, in a tenfold molar excess to enzyme, inhibited the binding of the native as well as the PLP-thrombin, whereas it did not influence the interaction between PLP2-thrombin and the cell. Since heparin might interfere with both the enzyme and the cell, the binding of heparin to endothelial cells was also examined. The results revealed that 3H- heparin also bound to cells. This binding was characterized by a Kd of 3 x 10(-7) M, approximately 10(6) sites/cell. Furthermore, thrombin bound to endothelial cells was released by antithrombin III. On the basis of these and other data in the literature, a model is proposed for the mechanism of the binding of thrombin to endothelial cells.


1995 ◽  
Vol 311 (2) ◽  
pp. 461-469 ◽  
Author(s):  
W A Patton ◽  
C A Granzow ◽  
L A Getts ◽  
S C Thomas ◽  
L M Zotter ◽  
...  

The binding of heparin or heparan sulphate to a variety of cell types results in specific changes in cell function. Endothelial cells treated with heparin alter their synthesis of heparan sulphate proteoglycans and extracellular matrix proteins. In order to identify a putative endothelial cell heparin receptor that could be involved in heparin signalling, anti-(endothelial cell) monoclonal antibodies that significantly inhibit heparin binding to endothelial cells were prepared. Four of these antibodies were employed in affinity-chromatographic isolation of a heparin-binding protein from detergent-solubilized endothelial cells. The heparin-binding protein isolated from porcine aortic endothelial cells using four different monoclonal antibodies has an M(r) of 45,000 assessed by SDS/PAGE. The 45,000-M(r) heparin-binding polypeptide is isolated as a multimer. The antibody-isolated protein binds to heparin-affinity columns as does the pure 45,000-M(r) polypeptide, consistent with its identification as a putative endothelial heparin receptor.


1989 ◽  
Vol 256 (5) ◽  
pp. C987-C993 ◽  
Author(s):  
J. M. Patel ◽  
F. R. Yarid ◽  
E. R. Block ◽  
M. K. Raizada

Angiotensin II (ANG II) is formed from angiotensin I by the action of angiotensin-converting enzyme located on the luminal surface of vascular endothelial cells. We determined whether binding sites specific for ANG II exist on pulmonary artery and aortic endothelial cells. The binding of 125I-ANG II to pulmonary artery and aortic endothelial cells was time dependent, saturable, and reversible. Scatchard analysis indicated a single class of high-affinity binding sites with equilibrium dissociation constants (Kd) of 0.85 and 0.81 nM and total binding capacities of 70 and 73 fmol/mg protein in pulmonary artery and aortic endothelial cells, respectively. Angiotensin analogues [Sar1,Ile8]ANG II and [Sar1,Ala8]ANG II, as well as angiotensin I and angiotensin III, competitively displaced 125I-ANG II in both pulmonary artery and aortic endothelial cells. The degree of inhibition of 125I-ANG II binding by these angiotensin analogues and antagonists was comparable except that [Sar1,Ala8]ANG II was 65% less potent than the other antagonists in both cell types. The binding of 125I-ANG II in pulmonary artery and aortic endothelial cells was not affected by vasopressin, substance P, or insulin, suggesting the presence of specific angiotensin receptors on these cells. These receptors appear to recognize the general configuration of angiotensin peptide rather than being specific to ANG II with no major differences between endothelial cells from pulmonary arterial or aortic vessels.


1996 ◽  
Vol 270 (6) ◽  
pp. L973-L978 ◽  
Author(s):  
A. Siflinger-Birnboim ◽  
H. Lum ◽  
P. J. Del Vecchio ◽  
A. B. Malik

We studied the role of Ca2+ in mediating the hydrogen peroxide (H2O2)-induced increase in endothelial permeability to 125I-labeled albumin using bovine pulmonary microvessel endothelial cells (BMVEC). Changes in cytosolic-free Ca2+ ([Ca2+]i) were monitored in BMVEC monolayers loaded with the Ca(2+)-sensitive membrane permeant fluorescent dye fura 2-AM. H2O2 (100 microM) produced a rise in [Ca2+]i within 10 s that was reduced by the addition of EGTA to the medium. Uptake of 45Ca2+ from the extracellular medium increased in the presence of H2O2 (100 microM) compared with control monolayers, suggesting that the H2O2-induced rise in [Ca2+]i is partly the result of extracellular Ca2+ influx. The effects of [Ca2+]i on endothelial permeability were addressed by pretreatment of BMVEC monolayers with BAPTA-AM (3-5 microM), a membrane permeant Ca2+ chelator, before the H2O2 exposure. BAPTA-AM produced an approximately 50% decrease in the H2O2-induced increase in endothelial permeability compared with endothelial cell monolayers exposed to H2O2 alone. The increase in endothelial permeability was independent of Ca2+ influx, since LaCl3 (0-100 microM), which displaces Ca2+ from binding sites on the cell surface, did not modify the permeability response. These results indicate that the rise in [Ca2+]i produced by H2O2 is a critical determinant of the increase in endothelial permeability.


1990 ◽  
Vol 96 (2) ◽  
pp. 263-270
Author(s):  
N.V. Ketis ◽  
J. Lawler

In addition to the increased synthesis of the classical heat-shock proteins (28,000, 71,000, 73,000, 90,000 and 100,000 Mr polypeptides) there is also an increase of thrombospondin in the growth medium of endothelial cells exposed to hyperthermia. The effect of a monoclonal antibody to thrombospondin on the recovery of endothelial cells from hyperthermia as it relates to cytoskeletal organization and cell spreading was assessed. The antibody interacts with the heparin-binding domain of thrombospondin in the extracellular matrix of cells. We report that during recovery from thermal insult at 37 degrees C, intermediate filaments, stress fibres and microtubules show distinct time-recovery characteristics in bovine aortic endothelial cells; that in the presence of this antibody the cytoskeleton is notably altered; that this antibody causes retraction of endothelial cell processes; and that the recovery of the cytoskeleton in endothelial cells exposed to hyperthermia is prevented by the thrombospondin antibody in the time frame examined. Our data suggest that the recovery of cells from heat shock requires the integrity of thrombospondin and its interactions.


1997 ◽  
Vol 273 (1) ◽  
pp. C188-C197 ◽  
Author(s):  
T. R. Yerby ◽  
C. R. Vibat ◽  
D. Sun ◽  
J. A. Payne ◽  
M. E. O'Donnell

The Na-K-Cl cotransporter is an important regulator of endothelial cell volume and may also contribute to flux of Na and Cl across the endothelium of the blood-brain barrier. To date, two Na-K-Cl cotransport isoforms have been identified, the cotransporter in secretory epithelia, NKCC1, and that in absorptive renal epithelia, NKCC2. Our previous studies showed that a monoclonal antibody to the cotransporter of human colonic T84 epithelial cells, an NKCC1 isoform, recognizes a 170-kDa glycoprotein from endothelial cells. The molecular identity of the Na-K-Cl cotransporter present in endothelial cells, however, has been unknown. In addition, although evidence has been provided that phosphorylation of the endothelial cotransporter plays a role in regulating its activity, little is known about potential sites for protein kinase interaction with the cotransporter. The present study was conducted to determine the molecular structure of the endothelial Na-K-Cl cotransporter. Using a 1.0-kilobase (kb) cDNA fragment from a conserved region of the T84 cell cotransporter, we screened a bovine aortic endothelial cell cDNA library and subsequently identified and sequenced two overlapping clones that together spanned the entire coding region. The endothelial cotransporter is a 1,201-amino acid protein with 12 putative transmembrane segments and large amino and carboxy termini, each containing several consensus sites for phosphorylation by protein kinases. Comparison of the endothelial cotransporter amino acid sequence with known NKCC1 and NKCC2 sequences revealed a 96% identity with NKCC1. Northern blot analysis using a cDNA probe from the endothelial cotransporter revealed high expression of approximately 7.5-kb transcripts in a number of bovine tissues. Finally, a prominent expression of Na-K-Cl cotransporter was found by Western blot analysis in both cultured and freshly isolated endothelial cells of bovine aorta and cerebral microvessels.


2020 ◽  
pp. jcs.248237
Author(s):  
Zhenguo Yang ◽  
Shuilong Wu ◽  
Federica Fontana ◽  
Yanyu Li ◽  
Wei Xiao ◽  
...  

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of Claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify Claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of Claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of Claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


1987 ◽  
Author(s):  
Freek van Iwaarden ◽  
G Philip ◽  
de Groot ◽  
Bonno N Bouma

The presence of High Molecular Weight kininogen (HMWK) was demonstrated in cultured human endothelial cells (EC) by immunofluorescence techniques. Using an enzyme linked immunosorbent assay a concentration of 58 ng HMWK/10 cells was determined. Immunoprecipitation studies performed with lysed metabolically labelled endothelial cells and mono-specific antisera directed against HMWK suggested that HMWK is not synthesized by the endothelial cells. Endothelial cells cultured in the presence of HMWK-depleted serum did not contain HMWK. This, suggests that endothelial cells can internalize HMWK. Using 125I-HMWK it was demonstrated that cultured endothelial cells bind HMWK in a time-dependent, specific and saturable.way. The cells were found to internalize 125I-HMWK, since I-HMWK was detected in solubilized endothelial cells after the cell bound 125I-HMWK had been eluted with dextran sulphate.The binding of I-HMWK required the presence of zinc ions. Optimal binding of 125I-HMWK was observed at 50 μM Zn++ . Calcium ions inhibited the Zn++ dependent binding of 125I-HMWK |25EC. In the presence of 3 mM CaCl2 the total binding of 125I-HMWK was significantly decreased, and a .concentration of 200 μM Zn++ was Required for the binding of 125I-HMWK to thecells. Higher,. Ca concentrations did not further decrease the binding of 125I-HMWK. Analysis of tl^e binding data by the ligand computer program indicated 3.2 x 10 binding sites per cell for HMWK with a Kd of 35 nM at 50 μM ZnCl2 and 1 mM CaCl2. Specify binding of HMWK did also occur at physiological plasma Zn++ concentrations. Half maximal binding was observed at HMWK concentrations of ± 105 nM at 10 μM ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 pM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 16 molecules of HMWK bound per cell and at 80 nM with 2.8 x 106 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.


Sign in / Sign up

Export Citation Format

Share Document