scholarly journals The presence of a Zn2+-dependent acid p-nitrophenyl phosphatase in bovine liver. Isolation and some properties

1986 ◽  
Vol 235 (1) ◽  
pp. 265-268 ◽  
Author(s):  
F Panara

The presence of a Zn2+-dependent acid p-nitrophenyl phosphatase (EC 3.1.3.2) in bovine liver was described. The enzyme was purified to apparent homogeneity and migrates as a single band during electrophoresis on polyacrylamide gel. The enzyme requires Zn2+ ions for catalytic activity, other bivalent cations have little or no effect. The enzyme, of Mr 118,000, optimum pH 6-6.2 and pI 7.4-7.5, was inhibited by EDTA, tartrate, adenine and ATP, but not by fluoride. The common phosphate esters are poor substrates for the enzyme, which hydrolyses preferentially p-nitrophenyl phosphate and o-carboxyphenyl phosphate. The Zn2+-dependent acid p-nitrophenyl phosphatase of bovine liver was different from the high-Mr acid phosphatases previously detected in mammalian tissues.

2008 ◽  
Vol 38 (3) ◽  
pp. 650-657 ◽  
Author(s):  
Luciane Almeri Tabaldi ◽  
Raquel Ruppenthal ◽  
Luciane Belmonte Pereira ◽  
Denise Cargnelutti ◽  
Jamile Fabbrin Gonçalves ◽  
...  

Acid phosphatases (3.1.3.2) are a group of enzymes widely distributed in nature, which catalyze the hydrolysis of a variety of phosphate esters in the pH range of 4-6. We confirmed the presence of acid phosphatases in seedlings of cucumber (Cucumis sativus), radish (Raphanus sativus) and rocket salad (Eruca vesicaria) under different assay conditions using a rapid and simple preparation. The results showed that the optimum pH and temperature used for all species were close to 5.5 and 35°C, respectively. The enzyme was inhibited by molybdate, fluoride, azide, levamisole, orthovanadate, Zn2+ and Cu2+. Suramin had no effect on enzyme activity. The acid phosphatase from cucumber, radish and rocket salad hydrolyzed a wide variety of phosphate esters and the highest activity was observed with PPi, ATP and GTP. These results demonstrate that the enzyme investigated in this study is different from well known ester phosphate cleaving plant enzymes (apyrase and inorganic pyrophosphatases) and this preparation could be a useful tool to future toxicological studies and to study initially all isoforms of acid phosphatase.


2020 ◽  
Vol 21 (13) ◽  
pp. 1304-1315
Author(s):  
Junmei Zhou ◽  
Lianghong Yin ◽  
Chenbin Wu ◽  
Sijia Wu ◽  
Jidong Lu ◽  
...  

Objective: Alkaline Carboxymethyl Cellulase (CMCase) is an attractive enzyme for the textile, laundry, pulp, and paper industries; however, commercial preparations with sufficient activity at alkaline conditions are scarce. Methods: High CMCase-producing bacterial isolate, SX9-4, was screened out from soil bacteria, which was identified as Flavobacterium sp. on the basis of 16S rDNA sequencing. Results: The optimum pH and temperature for CMCase reaction were 8.0 and 55°C, respectively. Alkaline CMCase was stable over wide pH (3.0-10.6) and temperature (25-55°C) ranges. Enzyme activity was significantly inhibited by the bivalent cations Mn2+ and Cu2+, and was activated by Fe2+. To improve the alkaline CMCase production of SX9-4, fermentation parameters were selected through onefactor- at-a-time and further carried out by response surface methodologies based on a central composite design. Conclusion: High CMCase production (57.18 U/mL) was achieved under the optimal conditions: 10.53 g/L carboxymethylcellulose sodium, 7.74 g/L glucose, 13.71 g/L peptone, and 5.27 g/L ammonium oxalate.


1978 ◽  
Vol 173 (2) ◽  
pp. 701-704 ◽  
Author(s):  
J S Franzen ◽  
P Marchetti ◽  
R Ishman ◽  
J Ashcom

6,6-Dithiodinicotinate shows half-of-the-sites reactivity towards the six catalytic-site thiol groups of bovine liver UDP-glucose dehydrogenase. The reagent introduces three intrasubunit disulphide linkages between catalytic-site thiol groups and non-catalytic-site thiol groups and abrogates 60% of the catalytic activity of the hexameric enzyme; excess 2-mercaptoethanol rapidly restores full catalytic activity. These results show the half-of-the-sites behaviour of the enzyme with the reagent and the presence of a non-catalytic-site thiol group capable of forming a disulphide linkage with a catalytic-site thiol group on the same subunit without irreversible denaturation.


1998 ◽  
Vol 27 (7) ◽  
pp. 649-650 ◽  
Author(s):  
Hana Kotoucová ◽  
Jirí Mazac ◽  
Radek Cibulka ◽  
František Hampl ◽  
František Liška

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Saleh A. Mohamed ◽  
Mohamed F. Elshal ◽  
Taha A. Kumosani ◽  
Alia M. Aldahlawi

L-asparaginase from bacteria has been used in treatment of acute lymphoblastic leukemia. The aim of this study was to purify and characterize L-asparaginase fromPhaseolus vulgarisseeds instead of microbial sources. L-asparaginase was purified to apparent homogeneity. The enzyme has molecular mass of 79 kDa. The purified asparaginase had very low activity toward a number of asparagine and glutamine analogues. L-asparaginase was free from glutaminase activity. Kinetic parameters, Km andVmax of purified enzyme, were found to be 6.72 mM and 0.16 μM, respectively. The enzyme had optimum pH at 8.0. The enzyme showed high stability at alkaline pH (pH 7.5–9.0) when incubated for up to 24 h. L-asparaginase had the same temperature optimum and thermal stability at 37°C. K+was able to greatly enhance the activity of asparaginase by 150% compared with other metals tested. In conclusion, L-asparaginase showed no glutaminase activity and good stability over a wide range of physiological conditions, and thus it could be used as a potential candidate for treatment of acute lymphoblastic leukemia.


1971 ◽  
Vol 49 (8) ◽  
pp. 978-986 ◽  
Author(s):  
A. D. Bharucha ◽  
M. R. V. Murthy

DNA polymerase activity was found to be present in appreciable quantities in the extracts of whole tissue (TS) as well as of nuclei (NS) isolated from newborn rat brain and liver. The NS fractions of either of the two tissues exhibited a higher specific activity per unit protein than the corresponding TS fractions. The optimum pH requirements as well as the ability to support DNA synthesis over a long period indicate that the NS fractions were also comparatively less contaminated by interfering substances than the TS fractions.The reaction requirements for the incorporation of TMP residues into DNA by the NS fractions of newborn rat brain and liver and the effect of various inhibitors and hydrolytic enzymes on this reaction were also investigated. These extracts resembled preparations from other mammalian tissues in that they exhibited absolute requirements for the primer DNA, the four complimentary deoxynucleoside triphosphates, and Mg2+ ions. When three of the four deoxynucleoside triphosphates were omitted and only TTP-2-14C was added to the reaction mixture, a limited incorporation of TMP-2-14C into DNA occurred. Other investigations such as the effect of actinomycin and of sulfhydryl compounds revealed that a large part of incorporation by the TS and NS fractions of newborn brain and liver was due to the replicative DNA nucleotidyltransferase enzyme.


1988 ◽  
Vol 66 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Eduardo T. Cánepa ◽  
Elena B.C. Llambías

Pig liver ferrochelatase was purified 465-fold with about 30% yield, to apparent homogeneity, by a procedure involving solubilization from mitochondria, ammonium sulfate fractionation, and Sephacryl S-300 chromatography. The fraction of each purification step had cobaltochelatase as well as ferrochelatase activity. A purified protein of molecular weight 40 000 was found by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A molecular weight of approximately 240 000 was obtained by Sephacryl S-300 chromatography. Both activities of the purified fraction increased linearly with time until 2 h. but nonlinear plots were obtained with increasing concentrations of protein. Their optimum pH values were similar. Km values were, for ferrochelatase activity, 23.3 μM for the metal and 30.3 μM for mesoporphyrin. and for cobaltochelatase activity. 27 and 45.5 μM, respectively. Fe2+ and Co2+ each protected against inactivation by heat. Pb2+, Zn2+, Cu2+, or Hg2+ inhibited both activities, while Mn2+ slightly activated; Mg2+ had no effect, at the concentrations tested. There appeared to be an involvement of sulfhydryl groups in metal insertion. Lipids, in correlation with their degree of unsaturation, activated both purified activities; phospholipids also had activation effects. We conclude that a single protein catalyzes the insertion of Fe2+ or Co2+ into mesoporphyrin.


1969 ◽  
Vol 17 (1) ◽  
pp. 30-35 ◽  
Author(s):  
SHIGERU MORIKAWA ◽  
TAKAYUKI HARADA

The distribution of catalase was investigated in bovine tissues using fluorescent antibody techniques. The immunochemical properties of liver catalase were also examined. Two distinct components of liver catalase in immune system were found. Both of them possessed common antigenicity with erythrocyte catalase. No cross-reactivity was observed by immunodiffusion between catalase and the other hemoproteins such as lactoperoxidase, cytochrome c and hemoglobins. Bovine liver, pancreas, kidney, spleen and peripheral blood were examined. Catalase was located mainly in the cytoplasm of hepatic cells, acinar cells of the pancreas, epithelia of proximal tubuli, splenic cells scattered in the red pulp and some leukocytes. It was not found in any nucleus. Intracorpuscular catalase could be revealed in the erythrocytes treated with surface-active agents but not in frozen sections.


Sign in / Sign up

Export Citation Format

Share Document