scholarly journals The relative molecular mass dependence of the anti-factor Xa properties of heparin

1986 ◽  
Vol 238 (2) ◽  
pp. 329-333 ◽  
Author(s):  
V Ellis ◽  
M F Scully ◽  
V V Kakkar

The effect of heparin fractions of various Mr, with high affinity for antithrombin III, on the kinetics of the reaction between factor Xa and antithrombin III have been studied using purified human proteins. Each of the heparin fractions, which varied between pentasaccharide and Mr 32,000, accelerated the inhibition of factor Xa although an increasing rate of inhibition was observed with increasing Mr. The chemically synthesized pentasaccharide preparation (Mr 1714) gave a maximum inhibition rate constant of 1.2 × 10(7) M-1 × min-1, compared with 6.3 × 10(4) M-1 × min-1 in the absence of heparin, and this rose progressively to 4.2 × 10(8) M-1 × min-1 with the two fractions of highest Mr (22,500 and 32,000). The 35-fold difference in inhibition rates observed with the high-affinity fractions was virtually abolished by the presence of 0.3 M-NaCl. The disparity in these rates of inhibition was shown to be due to a change in the Km for factor Xa when a two-substrate model of heparin catalysis was used. The Km for factor Xa rose from 28 nM for the fraction of Mr 32,000 to 770 nM for the pentasaccharide, whilst 0.3 M-NaCl also caused an increase in Km with the high-Mr fraction. These data suggest that the increased rates of inhibition observed with heparins of higher Mr may be due to an involvement of heparin binding to factor Xa as well as to antithrombin III.

1984 ◽  
Vol 62 (10) ◽  
pp. 975-983 ◽  
Author(s):  
Andrew L. Cerskus ◽  
Kathy J. Birchall ◽  
Frederick A. Ofosu ◽  
Jack Hirsh ◽  
Morris A. Blajchman

To investigate the relative contribution of heparin-binding thrombin and antithrombin III to the enhancement of the rate of inactivation of thrombin by antithrombin III, standard heparin was fractionated on matrix-linked thrombin and (or) antithrombin III. There was a good correlation between heparin affinity for antithrombin III and its ability to enhance the inactivation of thrombin and factor Xa. In addition, there was a good correlation between affinity of heparin for thrombin and its catalytic activity on the inactivation of thrombin by antithrombin III. Thus fractions with high affinity to thrombin had similar rate-enhancing activity for thrombin inactivation to that of fractions with high affinity to antithrombin III. Fractions with high affinity to both proteins were more potent than fractions with high affinity to either protein alone. No significant differences in mean molecular weight were observed among the various heparin fractions. A heparin fraction with very low affinity to thrombin and high affinity to antithrombin III was prepared by repeated fractionation of a low molecular weight heparin on the two affinity columns. This fraction had very weak rate-enhancing activity for the inactivation of thrombin by antithrombin III, but retained substantial activity for the inactivation of factor Xa. The results of these studies support the concept that, for both standard and low molecular weight heparin, the enhancement of the inactivation of thrombin by antithrombin III requires the interaction of the heparin with both thrombin and antithrombin III.


1986 ◽  
Vol 233 (1) ◽  
pp. 161-165 ◽  
Author(s):  
V Ellis ◽  
M F Scully ◽  
V V Kakkar

The influence of heparin on the inhibition of factor Xa has been studied under conditions where factor Xa is bound to collagen-thrombin-stimulated platelets to form the prothrombinase complex. Unfractionated heparin was found to cause a concentration-dependent acceleration of the inhibition of the platelet prothrombinase complex up to a maximum rate constant of 4.1 × 10(7) M−1 × min−1 at heparin concentrations of 0.2 microM and above. This is equivalent to a 4800-fold acceleration over the rate constant for the inhibition in the absence of heparin, and is 6.8-fold lower than the rate constant for the inhibition of uncomplexed factor Xa in the presence of saturating concentrations of heparin which was determined as 2.8 × 10(8) M−1 × min−1. The effects of three Mr fractions of heparin were also studied. These were a gel-filtered heparin of Mr 15000, a gel-filtered heparin of Mr 6000 and a heparin oligosaccharide (primarily 8-10 monosaccharide units) prepared by nitrous acid depolymerization, each with high affinity for antithrombin III. These fractions all accelerated the rate of the antithrombin III inhibition of the platelet prothrombinase complex, with maximum rate constants of 6.8 × 10(7), 1.4 × 10(7) and 9.8 × 10(6) M−1 × min−1, respectively. On comparison with the effect of these heparin fractions on the rate of inhibition of uncomplexed factor Xa a progressively increasing disparity between the rate of inhibition of uncomplexed and complexed factor Xa was observed, rising from 1.7-fold with the oligosaccharide to 6.8-fold with the unfractionated heparin. A possible mechanism for this differential activity between uncomplexed and complexed factor Xa with the various heparin fractions is discussed in terms of an involvement of heparin binding to factor Xa.


1981 ◽  
Author(s):  
M Blackburn

Chemical modification of antithrombin III with the tryptophan reagent, dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium bromide, results in the incorporation of one hydroxynitrobenzyl (HNB) moiety per molecule of antithrombin III. Heparin protects against tryptophan modification, particularly at low reagent concentrations. Unlike native antithrombin, which has high affinity for heparin, HNB-anti- thrombin does not bind to a heparin-agarose affinity column. Furthermore, the heparin-induced increase in tryptophan fluorescence, obtained with native antithrombin, is not observed with the singly modified inhibitor. HNB-anti- thrombin does not exhibit heparin-promoted rate enhancement in the inactivation of thrombin and Factor Xa. However, in the absence of heparin, HNB-antithrombin and native antithrombin possess progressive antithrombin activity, inactivating these proteases at identical rates. These results indicate that the integrity of a specific tryptophan residue is required for the binding of heparin to antithrombin III. Chemical and enzymatic cleavage techniques have been used to isolate peptides containing this tryptophan from both HNB-labeled and native antithrombin and to identify this critical tryptophan residue within the amino acid sequence of the antithrombin molecule.


1989 ◽  
Vol 262 (2) ◽  
pp. 651-658 ◽  
Author(s):  
M F Scully ◽  
V Ellis ◽  
N Shah ◽  
V Kakkar

The kinetics of inhibition of human alpha-thrombin and coagulation Factor Xa by antithrombin III were examined under pseudo-first-order reaction conditions as a function of the concentration of heparan sulphate with high affinity for antithrombin III. The maximum observed second-order rate constant was, for the antithrombin III-thrombin reaction, 1.2 x 10(9) M-1.min-1 compared with 2.4 x 10(9) M-1.min-1 in the presence of high-affinity heparin. However, the maximum rate was catalysed by much higher concentrations of heparan sulphate (1.3 microM) than of heparin (0.025 microM). Differences were also observed in the maximal acceleration of the antithrombin III-Factor Xa interaction: 1.2 x 10(9) M-1.min-1 at 0.2 microM-heparin sulphate compared with 2.2 x 10(9) M-1.min-1 at 0.04 microM-heparin. The differences in properties of heparan sulphate and heparin were analysed by using the random bi-reactant model of heparin action [Griffith (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5460-5464]. It was observed that the apparent binding affinity for thrombin was higher for heparan sulphate (180 nM) than for heparin (14 nM). The rate constant for transformation of the antithrombin III-Factor Xa complex into irreversible product differed between heparan sulphate (96 min-1) and heparin (429 min-1). These properties of the high-affinity heparan sulphate may be of importance in consideration of a putative role in the control of intravascular haemostasis.


1987 ◽  
Vol 243 (1) ◽  
pp. 31-37 ◽  
Author(s):  
T W Barrowcliffe ◽  
S J Havercroft ◽  
G Kemball-Cook ◽  
U Lindahl

The influence of Ca2+, phospholipid and Factor V was determined on the rate of inactivation of Factor Xa by antithrombin III, in the absence and in the presence of unfractionated heparin and of three high-affinity heparin oligosaccharides in the Mr range 1500-6000. In the absence of heparin the addition of Ca2+, phospholipid and Factor V caused a 4-fold decrease in rate of inactivation of Factor Xa. As concentrations of unfractionated heparin were increased the protective effect of Ca2+/phospholipid/Factor V was gradually abolished, and at a concentration of 2.4 nM there were no differences in rates of neutralization of Factor Xa in the presence or absence of Ca2+, phospholipid and Factor V. In contrast, heparin decasaccharide (Mr 3000) and pentasaccharide (Mr 1500) fragments were unable to overcome the protective effect of Ca2+/phospholipid/Factor V; in the presence of these components their catalytic efficiencies were 16-fold and 40-fold less respectively than that of unfractionated heparin. A heparin 20-22-saccharide fragment (Mr approx. 6000) gave similar inactivation rates in the presence and in the absence of Ca2+/phospholipid/Factor V. Human and bovine Factor Xa gave similar results. These results indicate that in the presence of Ca2+/phospholipid/Factor V optimum inhibition of Factor Xa requires a saccharide sequence of heparin additional to that involved in binding to antithrombin III. The use of free enzyme for the assessment of anti-(Factor Xa) activity of low-Mr heparin fractions could give misleading results.


1980 ◽  
Vol 44 (02) ◽  
pp. 092-095 ◽  
Author(s):  
T H Tran ◽  
C Bondeli ◽  
G A Marbet ◽  
F Duckert

SummaryTwo different AT-III fractions were purified from the plasma of a patient with recurrent superficial thrombophlebitis. The abnormal AT-III fraction (A-AT) was compared to the normal AT-III fraction (N-AT) in the inhibition of thrombin and factor Xa. Without heparin, both inactivate proteases in a similar manner and at the same rate. However, at low heparin concentration the thrombin inhibition proceeds more slowly with A-AT than with N-AT. At high heparin concentration the difference between A-AT and N-AT becomes very small. The inhibition of factor Xa follows a similar pattern. It is suggested that the heparin binding site of A-AT differs from that of N-AT resulting in a decreased heparin cofactor activity.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


1983 ◽  
Vol 49 (02) ◽  
pp. 109-115 ◽  
Author(s):  
M Hoylaerts ◽  
E Holmer ◽  
M de Mol ◽  
D Collen

SummaryTwo high affinity heparin fragments (A/r 4,300 and M, 3,200) were covalently coupled to antithrombin III (J. Biol. Chem. 1982; 257: 3401-3408) with an apparent 1:1 stoichiometry and a 30-35% yield.The purified covalent complexes inhibited factor Xa with second order rate constants very similar to those obtained for antithrombin III saturated with these heparin fragments and to that obtained for the covalent complex between antithrombin III and native high affinity heparin.The disappearance rates from plasma in rabbits of both low molecular weight heparin fragments and their complexes could adequately be represented by two-compartment mammillary models. The plasma half-life (t'/j) of both low Afr-heparin fragments was approximately 2.4 hr. Covalent coupling of the fragments to antithrombin III increased this half-life about 3.5 fold (t1/2 ≃ 7.7 hr), approaching that of free antithrombin III (t1/2 ≃ 11 ± 0.4 hr) and resulting in a 30fold longer life time of factor Xa inhibitory activity in plasma as compared to that of free intact heparin (t1/2 ≃ 0.25 ± 0.04 hr).


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


1981 ◽  
Vol 197 (3) ◽  
pp. 599-609 ◽  
Author(s):  
B Casu ◽  
P Oreste ◽  
G Torri ◽  
G Zoppetti ◽  
J Choay ◽  
...  

The chemical composition and the 13C n.m.r. spectra of heparin oligosaccharides (essentially octasaccharides), having high affinity for antithrombin III and high anti-(Factor Xa) activity, prepared by three independent approaches (extraction, partial deaminative cleavage with HNO2 and partial depolymerization with bacterial heparinase), leading to different terminal residues, have been studied and compared with those of the corresponding inactive species. Combined wit chemical data, the spectra of the active oligosaccharides and of their fragmentation products afforded information on composition and sequence. The three types of active oligosaccharides were shown to have the common hexasaccharide core I-Aa-G-As*-Is-As, where I and alpha-L-idopyranosyl-uronic acid, Aa = 2-acetamido-2-deoxy-alpha-D-glucopyranose, G = beta-D-glucopyranosyl-uronic acid, Is = alpha-L-idopyranosyluronic acid 2-O-sulphate, As = 2-deoxy-2-sulphamino-alpha-D-glucopyranose 6-O-sulphate. The fourth residue (As*) is an unusually substituted amino sugar resistant to mild deamination. The 13C spectra of the active species are characterized by signals from the above atypical amino sugar, the most evident of which is at 57.7 p.p.m. These signals, compared with those of appropriate synthetic model compounds, are compatible with the recently proposed 3-O-sulphation of the residue As* [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555].


Sign in / Sign up

Export Citation Format

Share Document