scholarly journals Yeast phosphoglycerate kinase: investigation of catalytic function by site-directed mutagenesis

1987 ◽  
Vol 241 (2) ◽  
pp. 609-614 ◽  
Author(s):  
C A B Wilson ◽  
N Hardman ◽  
L A Fothergill-Gilmore ◽  
S J Gamblin ◽  
H C Watson

A salt link buried in the domain interface of phosphoglycerate kinase has been implicated as being important in controlling the conformational transition from the open, or substrate-binding, to the closed, or catalytically competent, form of the enzyme. The residues contributing to the salt link are remote from the active site, but are connected to the substrate-binding sites through strands of beta-sheet. It has been suggested that these residues may also mediate sulphate and anion activation. These assumptions have been tested by examining the properties of a site-directed mutant (histidine-388----glutamine-388). The expression and overall structural integrity of the mutant, produced in yeast from a multicopy plasmid, remains essentially unaltered from the wild-type enzyme. However, the mutant enzyme has a kcat. reduced by 5-fold. The Km for ATP is lowered by 3-fold, and the Km for 3-phosphoglycerate is unaffected. The effects of sulphate on activity over a wide range of substrate concentrations appear to be the same for both the mutant and wild-type enzymes. These results lead to a reappraisal of the mechanistic role of the inter-domain histidine-glutamate interaction, as well as a refinement of the kinetic model of the enzyme.

2016 ◽  
Vol 113 (37) ◽  
pp. 10358-10363 ◽  
Author(s):  
Hüseyin Ilgü ◽  
Jean-Marc Jeckelmann ◽  
Vytautas Gapsys ◽  
Zöhre Ucurum ◽  
Bert L. de Groot ◽  
...  

Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli.


1994 ◽  
Vol 72 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Tanetoshi Koyama ◽  
Kazuhiro Saito ◽  
Kyozo Ogura ◽  
Shusei Obata ◽  
Ayumi Takeshita

Site-directed mutation was introduced into the gene for the farnesyl diphosphate synthase of Bacillus stearothermophilus. To investigate the significance of the three C-terminal amino acids, where arginine is completely conserved throughout the farnesyl diphosphate synthases of prokaryotes and eukaryotes, three kinds of mutant enzymes, R295V, D296G, and H297L, which have replacements of arginine-295 with valine, aspartate-296 with glycine, and histidine-297 with leucine, respectively, were overproduced and purified to homogeneity. All of the three mutant enzymes showed similar catalytic activities to that of the wild-type enzyme, indicating that the basic amino acids including the conserved arginine in the C-terminal region are not essential for catalytic function. They were also similar to the wild-type enzyme with respect to pH optima, thermostability, reaction product, and kinetic parameters for allylic substrates. However, their Km values for isopentenyl diphosphate are approximately twice that of the wild type.


2007 ◽  
Vol 282 (49) ◽  
pp. 36037-36047 ◽  
Author(s):  
Stina Lundgren ◽  
Birgit Andersen ◽  
Jure Piškur ◽  
Doreen Dobritzsch

β-Alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu159 and Arg322 as crucial for catalysis and His262 and His397 as functionally important but not essential. We determined the crystal structures of wild-type β-alanine synthase in complex with the reaction product β-alanine, and of the mutant E159A with the substrate N-carbamyl-β-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a ∼30° rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.


2000 ◽  
Vol 182 (12) ◽  
pp. 3429-3436 ◽  
Author(s):  
Laura Meek ◽  
Daniel J. Arp

ABSTRACT The hydrogenase in Azotobacter vinelandii, like other membrane-bound [NiFe] hydrogenases, consists of a catalytic heterodimer and an integral membrane cytochrome b. The histidines ligating the hemes in this cytochrome b were identified by H2 oxidation properties of altered proteins produced by site-directed mutagenesis. Four fully conserved and four partially conserved histidines in HoxZ were substituted with alanine or tyrosine. The roles of these histidines in HoxZ heme binding and hydrogenase were characterized by O2-dependent H2 oxidation and H2-dependent methylene blue reduction in vivo. Mutants H33A/Y (H33 replaced by A or Y), H74A/Y, H194A, H208A/Y, and H194,208A lost O2-dependent H2 oxidation activity, H194Y and H136A had partial activity, and H97Y,H98A and H191A had full activity. These results suggest that the fully conserved histidines 33, 74, 194, and 208 are ligands to the hemes, tyrosine can serve as an alternate ligand in position 194, and H136 plays a role in H2 oxidation. In mutant H194A/Y, imidazole (Imd) rescued H2 oxidation activity in intact cells, which suggests that Imd acts as an exogenous ligand. The heterodimer activity, quantitatively determined as H2-dependent methylene blue reduction, indicated that the heterodimers of all mutants were catalytically active. H33A/Y had wild-type levels of methylene blue reduction, but the other HoxZ ligand mutants had significantly less than wild-type levels. Imd reconstituted full methylene blue reduction activity in mutants H194A/Y and H208A/Y and partial activity in H194,208A. These results indicate that structural and functional integrity of HoxZ is required for physiologically relevant H2 oxidation, and structural integrity of HoxZ is necessary for full heterodimer-catalyzed H2 oxidation.


1999 ◽  
Vol 337 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Lulu A. BRIX ◽  
Ronald G. DUGGLEBY ◽  
Andrea GAEDIGK ◽  
Michael E. McMANUS

Human aryl sulphotransferase (HAST) 1, HAST3, HAST4 and HAST4v share greater than 90% sequence identity, but vary markedly in their ability to catalyse the sulphonation of dopamine and p-nitrophenol. In order to investigate the amino acid(s) involved in determining differing substrate specificities of HASTs, a range of chimaeric HAST proteins were constructed. Analysis of chimaeric substrate specificities showed that enzyme affinities are mainly determined within the N-terminal end of each HAST protein, which includes two regions of high sequence divergence, termed Regions A (amino acids 44–107) and B (amino acids 132–164). To investigate the substrate-binding sites of HASTs further, site-directed mutagenesis was performed on HAST1 to change 13 individual residues within these two regions to the HAST3 equivalent. A single amino acid change in HAST1 (A146E) was able to change the specificity for p-nitrophenol to that of HAST3. The substrate specificity of HAST1 towards dopamine could not be converted into that of HAST3 with a single amino acid change. However, compared with wild-type HAST1, a number of the mutations resulted in interference with substrate binding, as shown by elevated Ki values towards the co-substrate 3´-phosphoadenosine 5´-phosphosulphate, and in some cases loss of activity towards dopamine. These findings suggest that a co-ordinated change of multiple amino acids in HAST proteins is needed to alter the substrate specificities of these enzymes towards dopamine, whereas a single amino acid at position 146 determines p-nitrophenol affinity. A HAST1 mutant was constructed to express a protein with four amino acids deleted (P87–P90). These amino acids were hypothesized to correspond to a loop region in close proximity to the substrate-binding pocket. Interestingly, the protein showed substrate specificities more similar to wild-type HAST3 than HAST1 and indicates an important role of these amino acids in substrate binding.


2007 ◽  
Vol 30 (5) ◽  
pp. 869-875 ◽  
Author(s):  
Guangfei Liu ◽  
Jiti Zhou ◽  
Jing Wang ◽  
Bin Yan ◽  
Jingmei Li ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Juliana C. Ferreira ◽  
Samar Fadl ◽  
Adrian J. Villanueva ◽  
Wael M. Rabeh

Coronaviruses are responsible for multiple pandemics and millions of deaths globally, including the current pandemic of coronavirus disease 2019 (COVID-19). Development of antivirals against coronaviruses, including the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) responsible for COVID-19, is essential for containing the current and future coronavirus outbreaks. SARS-CoV-2 proteases represent important targets for the development of antivirals because of their role in the processing of viral polyproteins. 3-Chymotrypsin-like protease (3CLpro) is one such protease. The cleavage of SARS-CoV-2 polyproteins by 3CLpro is facilitated by a Cys145–His41 catalytic dyad. We here characterized the catalytic roles of the cysteine–histidine pair for improved understanding of the 3CLpro reaction mechanism, to inform the development of more effective antivirals against Sars-CoV-2. The catalytic dyad residues were substituted by site-directed mutagenesis. All substitutions tested (H41A, H41D, H41E, C145A, and C145S) resulted in a complete inactivation of 3CLpro, even when amino acids with a similar catalytic function to that of the original residues were used. The integrity of the structural fold of enzyme variants was investigated by circular dichroism spectroscopy to test if the catalytic inactivation of 3CLpro was caused by gross changes in the enzyme secondary structure. C145A, but not the other substitutions, shifted the oligomeric state of the enzyme from dimeric to a higher oligomeric state. Finally, the thermodynamic stability of 3CLpro H41A, H41D, and C145S variants was reduced relative the wild-type enzyme, with a similar stability of the H41E and C145A variants. Collectively, the above observations confirm the roles of His41 and Cys145 in the catalytic activity and the overall conformational fold of 3CLpro SARS-CoV-2. We conclude that the cysteine–histidine pair should be targeted for inhibition of 3CLpro and development of antiviral against COVID-19 and coronaviruses.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guilong Wang ◽  
Zimin Liu ◽  
Li Xu ◽  
Yunjun Yan

The lipase2 fromYarrowia lipolytica(YLLip2) is a yeast lipase exhibiting high homologous to filamentous fungal lipase family. Though its crystal structure has been resolved, its structure-function relationship has rarely been reported. By contrast, there are two amino acid residues (V94 and I100) with significant difference in the substrate binding pocket of YLLip2; they were subjected to site-directed mutagenesis (SDM) to introduce aromatic amino acid mutations. Two mutants (V94W and I100F) were created. The enzymatic properties of the mutant lipases were detected and compared with the wild-type. The activities of mutant enzymes dropped to some extent towardsp-nitrophenyl palmitate (pNPC16) and their optimum temperature was 35°C, which was 5°C lower than that of the wild-type. However, the thermostability of I100F increased 22.44% after incubation for 1 h at 40°C and its optimum substrate shifted fromp-nitrophenyl laurate (pNPC12) top-nitrophenyl caprate (pNPC10). The above results demonstrated that the two substituted amino acid residuals have close relationship with such enzymatic properties as thermostability and substrate selectivity.


2015 ◽  
Vol 467 (2) ◽  
pp. 259-270 ◽  
Author(s):  
Ryuichiro Suzuki ◽  
Nobuhiro Suzuki ◽  
Zui Fujimoto ◽  
Mitsuru Momma ◽  
Keitarou Kimura ◽  
...  

Cycloisomaltooligosaccharide glucanotransferase (CITase) is a member of glycoside hydrolase family 66 and it produces cycloisomaltooligosaccharides (CIs). Small CIs (CI-7–9) and large CIs (CI-≥10) are designated as oligosaccharide-type CIs (oligo-CIs) and megalosaccharide-type CIs (megalo-CIs) respectively. CITase from Bacillus circulans T-3040 (BcCITase) produces mainly CI-8 with little megalo-CIs. It has two family 35 carbohydrate-binding modules (BcCBM35-1 and BcCBM35-2). BcCBM35-1 is inserted in a catalytic domain of BcCITase and BcCBM35-2 is located at the C-terminal region. Our previous studies suggested that BcCBM35-1 has two substrate-binding sites (B-1 and B-2) [Suzuki et al. (2014) J. Biol. Chem. 289, 12040–12051]. We implemented site-directed mutagenesis of BcCITase to explore the preference for product size on the basis of the 3D structure of BcCITase. Mutational studies provided evidence that B-1 and B-2 contribute to recruiting substrate and maintaining product size respectively. A mutant (mutant-R) with four mutations (F268V, D469Y, A513V and Y515S) produced three times as much megalo-CIs (CI-10–12) and 1.5 times as much total CIs (CI-7–12) as compared with the wild-type (WT) BcCITase. The 3D structure of the substrate–enzyme complex of mutant-R suggested that the modified product size specificity was attributable to the construction of novel substrate-binding sites in the B-2 site of BcCBM35-1 and reactivity was improved by mutation on subsite −3 on the catalytic domain.


Sign in / Sign up

Export Citation Format

Share Document