scholarly journals Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans

1987 ◽  
Vol 248 (3) ◽  
pp. 953-956 ◽  
Author(s):  
V D Bokkenheuser ◽  
C H Shackleton ◽  
J Winter

Rutin and quercitrin are hydrolysed to quercetin, and robinin is hydrolysed to kaempferol, by faecal flora from healthy subjects. The enzymes required for these hydrolyses, namely alpha-rhamnosidase and beta-galactosidase, were produced by some strains of Bacteroides distasonis; other strains, however, synthesized beta-glucosidase. The last-named enzyme was also elaborated by Bacteroides uniformis and Bacteroides ovatus. All the enzymes were produced constitutively. A cell-free extract of B. distasonis containing beta-glucosidase displayed an enzymic activity of 1 mumol/10 min per 10 mg of protein.

1966 ◽  
Vol 101 (3) ◽  
pp. 680-686 ◽  
Author(s):  
G Shimon ◽  
MR Maurice

Ceramide lactoside [1-O-(galactosido-4-beta-glucosido)-2-N-acyl-sphingosine] was hydrolysed to ceramide glucoside and galactose by beta-galactosidase of rat brain. The reaction was not reversible, required cholate or taurocholate, had optimum pH5.0 and K(m) 2.2x10(-5)m. It was inhibited by gamma-galactonolactone and galactose as well as by ceramide, sphingosine and fatty acid. Ceramide lactoside could be degraded to ceramide, galactose and glucose by mixtures of rat-brain beta-galactosidase and ox-brain beta-glucosidase.


2014 ◽  
Vol 11 (6) ◽  
pp. 684-689 ◽  
Author(s):  
Jing-Yuan LIU ◽  
He-Shui YU ◽  
Bing FENG ◽  
Li-Ping KANG ◽  
Xu PANG ◽  
...  

1992 ◽  
Vol 267 (20) ◽  
pp. 14027-14032
Author(s):  
V Gopalan ◽  
A Pastuszyn ◽  
W R Galey ◽  
R.H. Glew

1988 ◽  
Vol 255 (3) ◽  
pp. 895-899 ◽  
Author(s):  
J Woodward ◽  
M Lima ◽  
N E Lee

Microcrystalline cellulose (10 mg of Avicel/ml) was hydrolysed to glucose by different concentrations of the purified cellulase components endoglucanase (EG) II and cellobiohydrolases (CBH) I and II, alone and in combination with each other, in the presence of excess beta-glucosidase. At a concentration of 360 micrograms/ml (160 micrograms of EG II/ml, 100 micrograms of CBH I/ml and 100 micrograms of CBH II/ml) the degree of synergism among them was negligible. As the concentration of cellulase decreased, the degree of synergism increased, reaching an optimum at 20 micrograms/ml (5 micrograms of EG II/ml, 10 micrograms of CBH I/ml and 5 micrograms of CBH II/ml). There was no apparent relationship between the ratio of the components and the degree of synergism. The latter is probably due, though it could not be proved, to the level of saturation of the substrate with each component. Inhibition of Avicel hydrolysis was observed when the substrate was incubated with saturating and nonsaturating concentrations of a mixture of EG II and CBH I respectively. A similar result was also observed with a combination of EG I and EG II.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anke Chen ◽  
Dan Wang ◽  
Rui Ji ◽  
Jixi Li ◽  
Shaohua Gu ◽  
...  

Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.


1986 ◽  
Vol 237 (2) ◽  
pp. 469-476 ◽  
Author(s):  
K L LaMarco ◽  
R H Glew

We have isolated from guinea-pig liver a broad-specificity beta-glucosidase of unknown function that utilizes as its substrate non-physiological aryl glycosides (e.g. 4-methylumbelliferyl beta-D-glucopyranoside, p-nitrophenyl beta-D-glucopyranoside). The present paper documents that this enzyme can be inhibited by various naturally occurring glycosides, including L-picein, dhurrin and glucocheirolin. In addition, L-picein, which acts as a competitive inhibitor of the broad-specificity beta-glucosidase (Ki 0.65 mM), is also a substrate for this enzyme (Km 0.63 mM; Vmax. 277,000 units/mg). Heat-denaturation, kinetic competition studies, chromatographic properties and pH optima all argue strongly that the broad-specificity beta-glucosidase is responsible for the hydrolysis of both the non-physiological aryl glycosides and L-picein. This paper demonstrates that beta-glucosidase can catalyse the hydrolysis of a natural glycoside, and may provide a key to understanding the function of this enigmatic enzyme. A possible role in the metabolism of xenobiotic compounds is discussed.


Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 109-118
Author(s):  
E. L. Triplett ◽  
R. Herzog ◽  
L. P. Russell

A population of polysomes isolated from frogskinis capable of supporting protein synthesis in a cell-free system containing an energy generating system, ‘soluble components’, and amino acids. These polysomes catalyse the oxidation of DOPA after gentle trypsinization, and they also have antigenic determinants attributable to tyrosine oxidase. Skin polysomes sedimented in 10–30 % sucrose gradients contain tyrosine oxidase peaks of enzymic activity at the bottom and top of the tube and in the 250 S regions. A peak of tyrosine oxidase antigenic acitvity is found in the 250–350S region of the gradient. Polysomes resolved on the gradient retain the ability to support protein synthesis in a cellfree system. All 250–350S particles capable of supporting the incorporation of [14C]amino acid into tyrosine oxidase are precipitable with tyrosine oxidase antibodies. It is probable that 250–350S tyrosine oxidase antibody precipitates contain only polysomes for this protein.


2008 ◽  
Vol 26 (No. 1) ◽  
pp. 1-14 ◽  
Author(s):  
Z. Grosová ◽  
M. Rosenberg ◽  
M. Rebroš

β-Galactosidase is an important industrial enzyme in the hydrolysis of milk and whey lactose. The enzymatic hydrolysis of lactose allows to avoid health and environmental problems posed by this disaccharide. In addition, this enzyme catalyses the formation of galacto-oligosaccharides, which are prebiotic additives for the so-called “healthy foods”. β-Galactosidase is one of the relatively few enzymes that have been used in large-scale processes in both free and immobilised forms. This article presents a review of recent trends in immobilisation of β-galactosidase and their application in food industry.


2000 ◽  
Vol 46 (9) ◽  
pp. 1387-1394 ◽  
Author(s):  
Jochen Reinsberg ◽  
Jörg Dembinski ◽  
Christoph Dorn ◽  
Daniela Behrendt ◽  
Peter Bartmann ◽  
...  

Abstract Background: It has been shown that a high percentage of interleukin-8 (IL-8) in blood is cell associated. Recently, a simple method for determination of cell-associated IL-8 in whole blood after cell lysis has been described. The purpose of this study was to evaluate this method, to examine the influence of preanalytic sample handling, and to establish the concentration range of total IL-8 and its relation to age and sex in healthy subjects. Methods: Total IL-8 content of whole blood was determined after lysing blood cells with Milenia® cell lysis solution. IL-8 in the resulting blood lysate was measured with the IMMULITE® IL-8 immunoassay. Results: When freshly drawn blood was stored up to 48 h on ice, no significant changes in total IL-8 were measured in the subsequently prepared lysate, whereas with storage at room temperature, total IL-8 increased after 3 h from 94 ± 13 ng/L to 114 ± 16 ng/L (n = 10). In lysate stored for 48 h at 4 °C, marginal changes of the IL-8 concentration were noted, with storage at room temperature, only 76% ± 5% (n = 12) of initial concentration was recovered. From lysate frozen at −20 and −80 °C, respectively, 84% ± 4% and 93% ± 2% of initial IL-8 was recovered after 70 days (n = 10). IL-8 was measured with comparable precision in plasma (CV, 3.2–4.2%) and blood lysate (CV, 3.7–4.1%). When plasma was diluted with cell lysis solution, a slightly overestimated recovery (125% ± 3%) was observed; for lysate specimens with a cell lysis solution content ≥75%, the recovery after dilution was 98% ± 2%. In lysate prepared from 12 blood samples with exogenous IL-8 added, IL-8 recovery was 104% ± 2% (recovery from plasma <35%). The median total IL-8 in blood lysates from 103 healthy subjects (22–61 years) was 83 ng/L of blood (2.5–97.5 percentile range, 49–202 ng/L of blood). In females but not in males, total IL-8 increased significantly with advancing age (P <0.002). We found grossly increased total IL-8 in six pregnant women with amniotic infection syndrome. Conclusions: The evaluated method allows the assessment of total IL-8 in blood with good performance when appropriate conditions of sample pretreatment are considered. The values in healthy volunteers all were above the detection limit of the IL-8 assay; therefore, slight changes of total IL-8 could be noted. Thus, the present method is a suitable tool to study the diagnostic relevance of total IL-8 in blood.


Sign in / Sign up

Export Citation Format

Share Document