scholarly journals V79 Chinese-hamster cells rendered resistant to high cadmium concentration also become resistant to oxidative stress

1988 ◽  
Vol 256 (2) ◽  
pp. 475-479 ◽  
Author(s):  
A C Mello-Filho ◽  
L S Chubatsu ◽  
R Meneghini

Chinese hamster cells (V79) resistant to high concentrations of Cd2+ in the medium were obtained by using the procedure of Beach & Palmiter [(1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2110-2114], which in mouse led to amplification of metallothionein (MT) genes and to an enrichment in cellular MT. The Cd-resistant V79 clones isolated were significantly more resistant than parental cells to oxidative stress by extracellular H2O2 or a mixture of H2O2 and superoxide anion (O2-) generated by xanthine oxidase plus acetaldehyde. On a per-cell basis, there was no difference between the two cells in their total H2O2-decomposing or O2-(-)dismutating activity. The most likely explanation is that an enrichment in MT content in the Cd-resistant cells was responsible for this effect, because of the antioxidant properties already described for this protein.

Oxygen ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 3-15
Author(s):  
John T. Hancock

Control of cellular function is extremely complex, being reliant on a wide range of components. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen peroxide (H2O2) and the hydroxyl radical (∙OH), each with their own reactivity and effect. Nitrogen-based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given.


1985 ◽  
Vol 100 (2) ◽  
pp. 588-597 ◽  
Author(s):  
M B Meyers ◽  
B A Spengler ◽  
T D Chang ◽  
P W Melera ◽  
J L Biedler

We carried out cytogenetic studies of four Chinese hamster, mouse, and human cell lines selected for high levels of resistance (500- to 4,000-fold) to vincristine (VCR) by a multistep selection procedure. All cells examined contained gene amplification-associated metaphase chromosome abnormalities, either homogeneously staining regions (HSRs), abnormally banding regions (ABRs), or double-minute chromosomes (DMs); control actinomycin D- and daunorubicin-resistant hamster lines did not exhibit this type of chromosomal abnormality. VCR-resistant Chinese hamster sublines exhibited both increased synthesis of the protein V19 (Mr 19,000; pl = 5.7) and increased concentrations of V19 polysomal mRNA. When VCR-resistant cells were grown in drug-free medium, level of resistance, synthesis of V19, and amount of V19 mRNA declined in parallel with mean length of the HSR or mean number of DMs per cell. Cross-resistance studies indicate that VCR-resistant cells have increased resistance both to antimitotic agents and to a wide variety of agents unrelated to VCR in chemical structure and/or mechanism of action. Our studies of tubulin synthesis in Chinese hamster cells indicate no overproduction of tubulin or presence of a mutant tubulin species. Comparison with antifolate-resistant Chinese hamster cells known to contain amplified dihydrofolate reductase genes localized to HSRs or ABRs strongly suggests that the HSRs, ABRs, or DMs of the Vinca alkaloid-resistant sublines likewise represent cytological manifestations of specifically amplified genes, possibly encoding V19, involved in development of resistance to VCR.


1990 ◽  
Vol 267 (2) ◽  
pp. 453-459 ◽  
Author(s):  
D R Spitz ◽  
R R Malcolm ◽  
R J Roberts

Toxic aldehydes, such as 4-hydroxy-2-nonenal (4HNE) and 2-nonenal (2NE), formed during lipid peroxidation have been isolated and implicated in the cytotoxic effects of oxidative stress. We have investigated the cytotoxicity and metabolism of 4HNE and 2NE in control (HA-1) cells and in two H2O2-resistant Chinese hamster fibroblast cell lines. The H2O2-resistant cells were found to be significantly more resistant than HA-1 cells to the cytotoxicity of 4HNE, as determined by clonogenic cell survival (dose-modifying factors at 10% isosurvival of 2.0-3.0). The H2O2-resistant cells demonstrated a significant 2-3-fold increase in the amount of 4HNE removed (mol/cell) from culture media containing 72 microM-4HNE when compared with HA-1 cells. The enhanced ability of H2O2-resistant cells to metabolize 4HNE was abolished by heating the cells at 100 degrees C for 45 min. Similar results were obtained with 2NE. Total glutathione and glutathione transferase activity, believed to be involved in cellular detoxification of 4HNE, were found to be significantly increased (2-3-fold) in the resistant cells when compared with the HA-1 cells. These results show that cell lines adapted and/or selected in a highly peroxidative environment are also resistant to the cytotoxicity of aldehydes formed during lipid peroxidation. This resistance appears to be related to increased cellular metabolism of these aldehydes, possibly through the glutathione transferase system. These findings suggest that the formation of aldehydes due to lipid peroxidation may contribute significantly to the mechanisms of oxidant-induced injury and the selective pressure exerted by H2O2-mediated cytotoxicity in culture.


2005 ◽  
Vol 64 (1) ◽  
Author(s):  
Paolo Biagi ◽  
Luigi Abate

Oxidative stress is one of the new and most intriguing pathogenetic hypotheses of heart failure; it involves various mechanisms such as endothelial dysfunction, mechanoenergetic uncoupling and apoptosis. Xanthine oxidase, a key enzyme in purine catabolism, is overexpressed in patients with heart failure, and it is also an important source of oxidizing activity molecules (free radicals, superoxide anion, oxygen peroxide, etc…). Allopurinol competitively inhibits the action of xanthine oxidase and effectively counters oxidative stress. It could thus prove useful in the treatment of heart failure: in fact it is the only drug that has been proven able to lower O2 consumption of dysfunctioning myocardium. The Authors briefly review the xanthine oxido-reductase enzyme system and in particular analyse the latest evidence reported in the literature on allopurinol in the treatment of heart failure.


1974 ◽  
Vol 63 (3) ◽  
pp. 773-779 ◽  
Author(s):  
Robert H. F. Peterson ◽  
Judith A. O'Neil ◽  
June L. Biedler

A graded series of drug-resistant Chinese hamster sublines has been examined for biochemical changes accompanying resistance to actinomycin D. The most highly resistant subline, DC-3F/AD X, is maintained at 10 µg/ml of the antibiotic. It was shown that over 250 times more actinomycin D is required to inhibit RNA synthesis in this subline than in the parental DC-3F line. The DC-3F/AD X subline was also shown to have a somewhat reduced capacity to transport uridine as compared to parental cells. Sensitive cells took up over 50 times more tritiated antibiotic than the most resistant cells, as determined in a 1-h assay. Uptake of actinomycin D was shown to be temperature-dependent in both resistant and sensitive cells and was not influenced by various metabolic inhibitors. Resistance could not be explained by a rapid uptake and release of the antibiotic, as demonstrated in efflux experiments, or by its metabolism. In addition, highly resistant cells which are cross-resistant to puromycin were shown to have a reduced capacity to take up labeled puromycin. These studies provide further evidence indicating that the mechanism of resistance to actinomycin D is reduced permeability to drug and suggesting that cell membrane alteration accounts for resistance to both actinomycin D and puromycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ewa Skała ◽  
Przemysław Sitarek ◽  
Marek Różalski ◽  
Urszula Krajewska ◽  
Janusz Szemraj ◽  
...  

Rhaponticum carthamoideshas a long tradition of use in Siberian folk medicine. The roots and rhizomes of this species are used in various dietary supplements or nutraceutical preparations to increase energy level or eliminate physical weakness. This is the first report to reveal the protective and DNA repair stimulating abilities ofR. carthamoidesroot extracts in Chinese hamster ovary (CHO) cells exposed to an oxidative agent. Both transformed root extract (TR extract) and extract of soil-grown plant roots (NR extract) may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, but CHO cells stimulated with extract from the transformed roots demonstrated significantly stronger properties than cells treated with the soil-grown plant root extract. These differences in biological activity may be attributed to the differences in the content of phenolic compounds in these root extracts. Preincubation of the CHO cells with TR and NR extracts showed an increase in gene expression and protein levels of catalase (CAT) and superoxide dismutase (SOD2).R. carthamoidesmay possess antioxidant properties that protect CHO cells against oxidative stress.


1993 ◽  
Vol 291 (1) ◽  
pp. 193-198 ◽  
Author(s):  
L S Chubatsu ◽  
R Meneghini

Metallothionein (MT) is a potent hydroxyl radical scavenger but its antioxidant properties in vivo have not been defined. Most of the recent results indicate that it does not afford protection to cells against the lethal action of oxidative stress. However, the possibility that MT confers protection against oxidative damage to a specific cellular target, such as DNA, had not been considered. We compared V79 Chinese hamster cells enriched in and depleted of MT in terms of DNA-strand scission. Zinc induces an increase in MT content of V79 Chinese hamster cells, without concomitant increase in the GSH level. These induced cells are more resistant to the production of DNA-strand scission by H2O2 than the parental cells. Conversely, cells rendered partially deprived of MT, by transfection with a plasmid vector in which the MT-I cDNA is antisense oriented in relation to a simian virus 40 promoter, became more susceptible to the DNA-damaging action of H2O2. The transfected cells did not exhibit alterations of GSH, superoxide dismutase- and H2O2-destroying enzymes. Indirect immunofluorescence indicated that most of the MT was concentrated in the cell nucleus. Neither overexpression nor lower expression of MT resulted in differential resistance to the killing action of H2O2. However, the combined high nuclear concentration of MT and its excellent hydroxyl scavenger properties confer protection to DNA from hydroxyl radical attack.


Sign in / Sign up

Export Citation Format

Share Document