scholarly journals Cytotoxicity and metabolism of 4-hydroxy-2-nonenal and 2-nonenal in H2O2-resistant cell lines. Do aldehydic by-products of lipid peroxidation contribute to oxidative stress?

1990 ◽  
Vol 267 (2) ◽  
pp. 453-459 ◽  
Author(s):  
D R Spitz ◽  
R R Malcolm ◽  
R J Roberts

Toxic aldehydes, such as 4-hydroxy-2-nonenal (4HNE) and 2-nonenal (2NE), formed during lipid peroxidation have been isolated and implicated in the cytotoxic effects of oxidative stress. We have investigated the cytotoxicity and metabolism of 4HNE and 2NE in control (HA-1) cells and in two H2O2-resistant Chinese hamster fibroblast cell lines. The H2O2-resistant cells were found to be significantly more resistant than HA-1 cells to the cytotoxicity of 4HNE, as determined by clonogenic cell survival (dose-modifying factors at 10% isosurvival of 2.0-3.0). The H2O2-resistant cells demonstrated a significant 2-3-fold increase in the amount of 4HNE removed (mol/cell) from culture media containing 72 microM-4HNE when compared with HA-1 cells. The enhanced ability of H2O2-resistant cells to metabolize 4HNE was abolished by heating the cells at 100 degrees C for 45 min. Similar results were obtained with 2NE. Total glutathione and glutathione transferase activity, believed to be involved in cellular detoxification of 4HNE, were found to be significantly increased (2-3-fold) in the resistant cells when compared with the HA-1 cells. These results show that cell lines adapted and/or selected in a highly peroxidative environment are also resistant to the cytotoxicity of aldehydes formed during lipid peroxidation. This resistance appears to be related to increased cellular metabolism of these aldehydes, possibly through the glutathione transferase system. These findings suggest that the formation of aldehydes due to lipid peroxidation may contribute significantly to the mechanisms of oxidant-induced injury and the selective pressure exerted by H2O2-mediated cytotoxicity in culture.

1982 ◽  
Vol 94 (3) ◽  
pp. 586-591 ◽  
Author(s):  
B A Criscuolo ◽  
S S Krag

Chinese hamster ovary (CHO) cells resistant to the antibiotic tunicamycin (TM) have been isolated by a stepwise selection procedure with progressive increments of TM added to the medium. TM inhibits asparagine-linked glycoprotein biosynthesis by blocking the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the lipid carrier. The TM-resistant cells exhibited a 200-fold increase in their LD50 for TM and were morphologically distinct from the parental cells. The rate of asparagine-linked glycoprotein biosynthesis was the same for wild-type and TM-resistant cells. Membrane preparations from TM-resistant cells cultured for 16 d in the absence of TM had a 15-fold increase in the specific activity of the UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-phosphate transferase as compared to membranes of wild-type cells. The products of the in vitro assay were N-acetylglucosaminylpyrophosphoryl-lipid and N,N'-diacetylchitobiosylpyrophosphoryl-lipid for membranes from both TM-resistant and wild-type cells. The transferase activity present in membrane preparations from wild-type of TM-resistant cells was inhibited by comparable levels of TM. The data presented are consistent with overproduction of enzyme as the mechanism of resistance in these variant CHO cells.


1989 ◽  
Vol 9 (4) ◽  
pp. 1635-1641 ◽  
Author(s):  
S G Grant ◽  
R G Worton

We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.


2021 ◽  
Vol 22 (10) ◽  
pp. 5218
Author(s):  
Tomu Kamijo ◽  
Takahiro Kaido ◽  
Masahiro Yoda ◽  
Shinpei Arai ◽  
Kazuyoshi Yamauchi ◽  
...  

We identified a novel heterozygous hypofibrinogenemia, γY278H (Hiroshima). To demonstrate the cause of reduced plasma fibrinogen levels (functional level: 1.12 g/L and antigenic level: 1.16 g/L), we established γY278H fibrinogen-producing Chinese hamster ovary (CHO) cells. An enzyme-linked immunosorbent assay demonstrated that synthesis of γY278H fibrinogen inside CHO cells and secretion into the culture media were not reduced. Then, we established an additional five variant fibrinogen-producing CHO cell lines (γL276P, γT277P, γT277R, γA279D, and γY280C) and conducted further investigations. We have already established 33 γ-module variant fibrinogen-producing CHO cell lines, including 6 cell lines in this study, but only the γY278H and γT277R cell lines showed disagreement, namely, recombinant fibrinogen production was not reduced but the patients’ plasma fibrinogen level was reduced. Finally, we performed fibrinogen degradation assays and demonstrated that the γY278H and γT277R fibrinogens were easily cleaved by plasmin whereas their polymerization in the presence of Ca2+ and “D:D” interaction was normal. In conclusion, our investigation suggested that patient γY278H showed hypofibrinogenemia because γY278H fibrinogen was secreted normally from the patient’s hepatocytes but then underwent accelerated degradation by plasmin in the circulation.


1983 ◽  
Vol 3 (6) ◽  
pp. 1053-1061
Author(s):  
W H Lewis ◽  
P R Srinivasan

Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.


2018 ◽  
Vol 90 (5) ◽  
pp. 1-6
Author(s):  
Mariusz Deska ◽  
Oliwia Segiet ◽  
Ewa Romuk ◽  
Grzegorz Buła ◽  
Joanna Polczyk ◽  
...  

Background: Primary hyperparathyroidism (PHPT) is one of the most common endocrine disorders and defined as excessive secretion of parathormone. PHPT is a risk factor of several cardiovascular diseases, which could be caused by alterations in oxidant-antioxidant balance. Materials and methods: Blood serum collected from 52 consecutive patients with PHPT treated surgically constituted our study material, whereas 36 healthy volunteers were our control group. Oxidative stress was evaluated in both patients and control subjects by assessment of malondialdehyde (MDA) and lipid hydroperoxides (LHP). Antioxidants were evaluated by the measurement of superoxide dismutase (SOD), ceruloplasmin (CER), catalase (CAT), sulfhydryl (SH) groups, glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione transferase activity (GST) and glutathione reductase (GR). Moreover total antioxidant capacity (TAC) and total oxidative status (TOS) were measured and oxidative stress index (OSI) was calculated. Results: OSI was increased in patients with PHPT when compared to normal controls, whereas TAC was lower in PHPT. The levels of CER, MnSOD, GR, SH groups and MDA were significantly decreased in PHPT. The levels of serum LHP, catalase and SOD were significantly higher in patients with PHPT than in healthy patients. The erythrocyte CAT activity and GST were significantly increased in patients after parathyroidectomy. The erythrocyte GR and GPx were up-regulated postoperatively, whereas SOD activity decreased. Conclusions: In PHPT there are several alterations in the balance between the production of reactive oxygen species and antioxidant defense system.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 113-113 ◽  
Author(s):  
Chad C. Bjorklund ◽  
Deborah J. Kuhn ◽  
Jairo A. Matthews ◽  
Michael Wang ◽  
Veerabhadran Baladandayuthapani ◽  
...  

Abstract Abstract 113 Background: Novel drugs such as the immunomodulatory agent lenalidomide have revolutionized the treatment of multiple myeloma, as evidenced by an increasing overall survival for patients with both newly-diagnosed, and relapsed and/or refractory disease. Despite these improvements, myeloma remains incurable, and is still characterized by a trend for increasing chemoresistance at relapse, with a decreasing duration of benefit from each successive line of therapy. By understanding the mechanisms responsible for the emergence of drug resistance, which have so far not been well characterized in the case of lenalidomide, it may be possible to rationally design novel regimens that could either overcome this resistance, or possibly prevent its emergence altogether. Methods: To improve our understanding of the mechanisms responsible for lenalidomide resistance, we developed cell line models of interleukin (IL)-6-dependent (ANBL-6 and KAS-6/1) and –independent (U266 and MM1.S) lenalidomide-resistant multiple myeloma cells. Starting at a concentration that was 1/10 of the IC50 for lenalidomide's anti-proliferative effects in drug-naïve cells, increasing drug concentrations were used until all the cell lines could proliferate and maintain cell membrane integrity in the presence of 10 μM lenalidomide. These cell lines were then used as an in vitro model of lenalidomide-specific drug resistance, and subjected to further characterization, including with gene expression profiling. Results: Resistance to lenalidomide was evidenced by a dramatic, 100-1000-fold increase in the IC50 values of these myeloma cells. In the case of ANBL-6 cells, for example, drug-naïve cells showed an IC50 of 0.14 μM using tetrazolium dye-based viability assays, but this increased to >100 μM in the drug-resistant cells, as was the case in U266 and MM1.S cells. This resistance was a stable phenotype, since removal of lenalidomide for seven to ninety days from cell culture conditions did not re-sensitize them when 10 μM lenalidomide was reintroduced. Gene expression profiling followed by pathway analysis to examine changes at the transcript level between wild-type parental and lenalidomide-resistant cell lines identified the Wnt/β-catenin pathway as the most altered across all cell lines. Increased expression was seen in several members of the low-density-lipoprotein receptor related protein family, including LRP1 and 5; members of the wingless-type MMTV integrations site family, including WNT3 and 4; β-catenin; and downstream Wnt/β-catenin targets such as CD44. Similar changes were detected in primary samples from a patient who developed clinically lenalidomide-refractory disease. Reporter assays revealed an up to 5-fold increase in LEF/TCF-dependent transcription both in drug-naïve cells acutely exposed to lenalidomide, and in their chronically exposed, lenalidomide-resistant clones. Western blotting and flow cytometry confirmed that these lenalidomide-resistant cells had increased expression by 2-20 fold of β-catenin and CD44, as well as other LEF/TCF targets, including Cyclin D1 and c-Myc. Comparable changes occurred after lenalidomide exposure in myeloma cells grown in the context of bone marrow stroma. Notably, lenalidomide-resistant cells showed decreased expression of casein kinase 1 and increased phosphorylation of glycogen synthase kinase 3 at Ser21/9, both of which would reduce the phosphorylation of β-catenin needed for its later proteasome-mediated degradation. Stimulation of the Wnt/β-catenin pathway with recombinant human Wnt3a resulted in resistance to lenalidomide in wild-type, drug-naïve cells, as evidenced by a 10-fold increase in the IC50. Conversely, exposure of lenalidomide-resistant cell lines to quercetin, a known antagonist of the β-catenin/TCF interaction, induced a partial re-sensitization to lenalidomide. Conclusions: These data support the hypothesis that activation of the Wnt/β-catenin pathway represents a mechanism of both acute and chronic resistance to the anti-proliferative effects of lenalidomide in multiple myeloma. Moreover, they support the development of strategies aimed at suppressing Wnt/β-catenin activity to resensitize multiple myeloma to the effects of this immunomodulatory agent in vivo. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 49 (7) ◽  
pp. 1133-1138 ◽  
Author(s):  
Eduard A Struys ◽  
Nanda M Verhoeven ◽  
Birthe Roos ◽  
Cornelis Jakobs

Abstract Background: d-2-Hydroxyglutaric aciduria (D-2-HGA), l-2-hydroxyglutaric aciduria (L-2-HGA), and the combined d/l-2-hydroxyglutaric aciduria (D/L-2-HGA) are poorly understood organic acidurias. To investigate the usefulness of cultured human skin fibroblasts for both diagnostic and research purposes, we measured disease-related metabolites in the cell culture medium. Methods: We measured d-2-hydroxyglutarate (D-2-HG), l-2-hydroxyglutarate (L-2-HG), succinate, 2-ketoglutarate, and citrate in fibroblast cell medium by stable-isotope-dilution gas chromatography–mass spectrometry and glutamine, glutamic acid, and lysine with an amino acid analyzer. We used six cell lines from patients with D-2-HGA, two from patients with L-2-HGA, three from patients with D/L-2-HGA, and seven control cell lines. Culture medium was analyzed after a 96-h incubation period. Results: Culture media from cell lines from D-2-HGA patients contained D-2-HG at concentrations 5- to 30-fold higher than media from controls, whereas the concentration of L-2-HG in media was not increased. Media from L-2-HGA cell lines showed a fivefold increase in L-2-HG compared with controls. Media containing fibroblasts from D/L-2-HGA patients contained moderately increased amounts of both D-2-HG and L-2-HG. For all cell lines, succinate concentrations in the blank medium were higher than after 96 h of incubation with the exception of two of three D/L-2-HGA cell lines. Media of D-2-HGA cell lines had 2-ketoglutarate concentrations that were 40% of that for controls. Glutamic acid concentrations in media of these cell lines were 60% lower than in controls. Conclusions: Cell culture media from fibroblasts from patients with D-2-HGA, L-2-HGA, or D/L-2-HGA contain increased amounts the corresponding 2-HGs, demonstrating the suitability of fibroblasts for both diagnosis of and research concerning 2-HGAs.


1988 ◽  
Vol 256 (2) ◽  
pp. 475-479 ◽  
Author(s):  
A C Mello-Filho ◽  
L S Chubatsu ◽  
R Meneghini

Chinese hamster cells (V79) resistant to high concentrations of Cd2+ in the medium were obtained by using the procedure of Beach & Palmiter [(1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2110-2114], which in mouse led to amplification of metallothionein (MT) genes and to an enrichment in cellular MT. The Cd-resistant V79 clones isolated were significantly more resistant than parental cells to oxidative stress by extracellular H2O2 or a mixture of H2O2 and superoxide anion (O2-) generated by xanthine oxidase plus acetaldehyde. On a per-cell basis, there was no difference between the two cells in their total H2O2-decomposing or O2-(-)dismutating activity. The most likely explanation is that an enrichment in MT content in the Cd-resistant cells was responsible for this effect, because of the antioxidant properties already described for this protein.


2021 ◽  
Vol 22 (19) ◽  
pp. 10247
Author(s):  
Hao-Yu Chuang ◽  
Li-Yun Hsu ◽  
Chih-Ming Pan ◽  
Narpati Wesa Pikatan ◽  
Vijesh Kumar Yadav ◽  
...  

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. Methods: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. Results: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. Conclusions: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document