scholarly journals Purification and characterization of heparin-binding growth factors from porcine uterus

1990 ◽  
Vol 266 (1) ◽  
pp. 273-282 ◽  
Author(s):  
D R Brigstock ◽  
R B Heap ◽  
P J Barker ◽  
K D Brown

Heparin-binding growth factors present in pig uterine tissue were purified by approx. 50,000-fold using a combination of ammonium sulphate precipitation, ion-exchange chromatography and heparin-affinity chromatography. Purification of the uterus-derived growth factors (UDGFs) was monitored by the stimulation of [3H]thymidine incorporation into Swiss 3T3 cells and by a radioreceptor assay using 125I-labelled epidermal growth factor (EGF) as the ligand. The latter was shown to be a novel, rapid and reliable assay for heparin-binding growth factors which utilizes their trans-modulation of EGF receptor affinity. UDGFs exhibit strong affinity for immobilized heparin and two forms, named alpha UDGF and beta UDGF, were distinguished by salt gradient elution from heparin-agarose affinity columns. beta UDGF activity was eluted from heparin-agarose between 1.5 M- and 1.8 M-NaCl, and was correlated with the elution of a protein doublet of 17.2 kDa and 17.7 kDa. Immunoblotting of heparin-purified beta UDGF indicated that the beta UDGF doublet is immunologically related to the 146-amino-acid form of bovine basic fibroblast growth factor (bFGF), and that the 17.2 kDa component is an N-terminally truncated form of the 17.7 kDa component. After purification by C4 reversed-phase h.p.l.c., this doublet was biologically active and greater than 95% pure as assessed by silver-stained SDS/PAGE. Amino acid composition and sequence analysis confirmed that these beta UDGF polypeptides were microheterogeneous forms of bFGF. Fractions containing alpha UDGF activity were eluted from heparin-agarose in 1.3 M-NaCl. These fractions contained a 16.5 kDa protein which co-migrated on SDS/polyacrylamide gels with recombinant human acidic FGF (aFGF) and which which cross-reacted with an antiserum raised against aFGF. The identification of heparin-binding growth factors in porcine uterus at the time of implantation raises the possibility that they function in the reproductive tract during early pregnancy.

1994 ◽  
Vol 14 (3) ◽  
pp. 1635-1646
Author(s):  
B A Thorne ◽  
G D Plowman

The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.


1994 ◽  
Vol 14 (3) ◽  
pp. 1635-1646 ◽  
Author(s):  
B A Thorne ◽  
G D Plowman

The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.


2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Irina A. Shurygina ◽  
Мichael G. Shurygin ◽  
Lubov V. Rodionova ◽  
Nataliya I. Ayushinova

AbstractObjectivesTo study the expression of growth factors in the regulation of tissue repair after peritoneal damage tissue response to peritoneal damage.MethodsExperimental study in 35 male Wistar rats determining the evolution over time of the tissue response to aseptic peritoneal damage. A standardized bowel and peritoneal lesions were created in the right lower quadrant by laparotomy. Then, tissular expression of growth factors was evaluated by multiplex polymerase chain reaction at seven timepoints between 6 h and 30 days, postoperatively.ResultsTissular responses of granulocyte-stimulating factors (Csf2, Csf3), connective tissue growth factor (Ctgf), epidermal growth factors and receptor (Egf, Egfr), fibroblast growth factors (Fgf2, 7 and 10), heparin binding EGF-like growth factor (Hbegf), hepatocyte growth factor (Hgf), insulin-like growth factor-1 (Igf1), mitogenic transforming growth factors (Tgfa, Tgfb1, Tgfbr3), and vascular endothelial growth factor A (Vegfa) were biphasic with a first expression peak at day 3, followed by a more pronounced peak at day 14.ConclusionsWe observed a long-lasting, widespread response of tissular growth factors for at least two weeks after peritoneal damage. To be clinically effective, the prophylaxis of postoperative adhesions might be needed for an extended period of time.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


Sign in / Sign up

Export Citation Format

Share Document