scholarly journals Regulation of fatty acid metabolism and gluconeogenesis by growth hormone and insulin in sheep hepatocyte cultures. Effects of lactation and pregnancy

1991 ◽  
Vol 274 (1) ◽  
pp. 21-26 ◽  
Author(s):  
N Emmison ◽  
L Agius ◽  
V A Zammit

Primary monolayer hepatocyte cultures derived from non-mated, pregnant and lactating sheep were used to investigate the interactions between the effects of growth hormone and insulin on (i) the partitioning of fatty acid metabolism between oxidation and esterification, and (ii) the rate of gluconeogenesis. In hepatocytes from lactating sheep the rates of gluconeogenesis, ketogenesis and very-low-density lipoprotein secretion were approx. 2-fold higher than in cells from non-mated or pregnant animals. There was no apparent difference in the rates of fatty acid uptake between the three groups of sheep cells. Growth hormone stimulated gluconeogenesis only in hepatocytes from non-mated sheep. It has no effect on the flux of fatty acid towards ketone body formation. Growth hormone inhibited intracellular accumulation of acylglycerol from exogenous fatty acid. Insulin alone had no such effect, but it blunted the effect of growth hormone when the two hormones were present together. The data suggest that major differences may exist between ruminants and non-ruminants in the response of liver metabolism both to lactation per se and to the effects of growth hormone and insulin.

1999 ◽  
Vol 276 (3) ◽  
pp. E427-E434 ◽  
Author(s):  
Labros S. Sidossis ◽  
Bettina Mittendorfer ◽  
David Chinkes ◽  
Eric Walser ◽  
Robert R. Wolfe

The effects of combined hyperglycemia-hyperinsulinemia on whole body, splanchnic, and leg fatty acid metabolism were determined in five volunteers. Catheters were placed in a femoral artery and vein and a hepatic vein. U-13C-labeled fatty acids were infused, once in the basal state and, on a different occasion, during infusion of dextrose (clamp; arterial glucose 8.8 ± 0.5 mmol/l). Lipids and heparin were infused together with the dextrose to maintain plasma fatty acid concentrations at basal levels. Fatty acid availability in plasma and fatty acid uptake across the splanchnic region and the leg were similar during the basal and clamp experiments. Dextrose infusion decreased fatty acid oxidation by 51.8% (whole body), 47.4% (splanchnic), and 64.3% (leg). Similarly, the percent fatty acid uptake oxidized decreased at the whole body level (53 to 29%), across the splanchnic region (30 to 13%), and in the leg (48 to 22%) during the clamp. We conclude that, in healthy men, combined hyperglycemia-hyperinsulinemia inhibits fatty acid oxidation to a similar extent at the whole body level, across the leg, and across the splanchnic region, even when fatty acid availability is constant.


1998 ◽  
Vol 329 (2) ◽  
pp. 265-273 ◽  
Author(s):  
F. M. Clemens PRINSEN ◽  
H. Jacques VEERKAMP

We studied the involvement of fatty acid-binding protein (FABP) in growth, differentiation and fatty acid metabolism of muscle cells by lipofection of rat L6 myoblasts with rat heart (H) FABP cDNA or with rat adipocyte (A) FABP cDNA in a eukaryotic expression vector which contained a puromycin acetyltransferase cassette. Stable transfectants showed integration into the genome for all constructs and type-specific overexpression at the mRNA and protein level for the clones with H-FABP and A-FABP cDNA constructs. The rate of proliferation of myoblasts transfected with rat A-FABP cDNA was 2-fold higher compared with all other transfected cells. In addition, these myoblasts showed disturbed fusion and differentiation, as assessed by morphological examination and creatine kinase activity. Uptake rates of palmitate were equal for all clone types, in spite of different FABP content and composition. Palmitate oxidation over a 3 h period was similar in all clones from growth medium. After being cultured in differentiation medium, mock- and H-FABP-cDNA-transfected cells showed a lower fatty acid-oxidation rate, in contrast with A-FABP-cDNA-transfected clones. The ratio of [14C]palmitic acid incorporation into phosphatidylcholine and phosphatidylethanolamine of A-FABP-cDNA-transfected clones changed in the opposite direction in differentiation medium from that of mock- and H-FABP-cDNA-transfected clones. In conclusion, transfection of L6 myoblasts with A-FABP cDNA does not affect H-FABP content and fatty acid uptake, but changes fatty acid metabolism. The latter changes may be related to the observed fusion defect.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 92
Author(s):  
Hao Xu ◽  
Yu Jiang ◽  
Xiao-Min Miao ◽  
Yi-Xi Tao ◽  
Lang Xie ◽  
...  

Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.


Diabetes ◽  
2001 ◽  
Vol 50 (6) ◽  
pp. 1389-1396 ◽  
Author(s):  
Lorraine Patricia Turcotte ◽  
Jason Richard Swenberger ◽  
Michelle Zavitz Tucker ◽  
Alice Jane Yee

1984 ◽  
Vol 102 (3) ◽  
pp. 381-386 ◽  
Author(s):  
R. Gross ◽  
P. Mialhe

ABSTRACT To elucidate the hypolipacidaemic effect of insulin in ducks, its action on the uptake of free fatty acids (FFA) by duck hepatocytes was determined. At low doses (10 mu./l) insulin stimulated FFA uptake. This effect was not observed with higher doses of insulin (20, 30 and 50 mu./l). Growth hormone at physiological concentrations and corticosterone (14·4 nmol/l) decreased basal activity, probably by reducing glucose metabolism and consequently α-glycerophosphate (α-GP) supply. Insulin was able to reverse the inhibition induced by GH and corticosterone on both FFA uptake and α-GP production. These results therefore suggest that the hypolipacidaemic effect of insulin may be partly mediated by its action on hepatic FFA uptake. J. Endocr. (1984) 102, 381–386


2019 ◽  
Author(s):  
Yasushige Shingu ◽  
Shingo Takada ◽  
Takashi Yokota ◽  
Ryosuke Shirakawa ◽  
Akira Yamada ◽  
...  

AbstractAtrial metabolic disturbance contributes to the onset and development of atrial fibrillation (AF). Autophagy plays a role in maintaining the cellular energy balance. We examined whether the altered atrial expression of genes related to fatty acid metabolism is linked to that related to autophagy in chronic AF. Right atrial tissue was obtained during heart surgery from 51 patients with sinus rhythm (SR, n=38) or chronic AF (n=13). Preoperative fasting serum free-fatty-acid levels were significantly higher in the AF patients. The atrial gene expression of fatty acid binding protein 3 (FABP3), which is involved in the cells’ fatty acid uptake and intracellular fatty acid transport, was significantly increased in AF patients compared to SR patients; in the SR patients it was positively correlated with the right atrial diameter and intra-atrial EMD, parameters of structural and electrical atrial remodeling that was evaluated by an echocardiography. In contrast, the two groups’ atrial contents of diacylglycerol (DAG), a toxic fatty acid metabolite, were comparable. Importantly, the atrial gene expression of microtubule-associated protein light chain 3 (LC3) was significantly increased in the AF patients, and autophagy-related genes including LC3 were positively correlated with the atrial expression of FABP3. In conclusion, in chronic AF patients, the atrial expression of FABP3 was upregulated in association with autophagy-related genes without altered atrial DAG content. Our findings may support the hypothesis that dysregulated cardiac fatty acid metabolism contributes to the progression of AF and induction of autophagy has a cardioprotective effect against cardiac lipotoxicity in chronic AF.


2002 ◽  
Vol 282 (5) ◽  
pp. H1871-H1878 ◽  
Author(s):  
Margaret P. Chandler ◽  
Hazel Huang ◽  
Tracy A. McElfresh ◽  
William C. Stanley

During stress, patients with coronary artery disease frequently fail to increase coronary flow and myocardial oxygen consumption (MV˙o 2) in response to a greater demand for oxygen, resulting in “demand-induced” ischemia. We tested the hypothesis that dobutamine infusion with flow restriction stimulates nonoxidative glycolysis without a change in MV˙o 2 or fatty acid uptake. Measurements were made in the anterior wall of anesthetized open-chest swine hearts ( n = 7). The left anterior descending (LAD) coronary artery flow was controlled via an extracorporeal perfusion circuit, and substrate uptake and oxidation were measured with radiotracers. Demand-induced ischemia was produced with intravenous dobutamine (15 μg · kg−1 · min−1) and 20% reduction in LAD flow for 20 min. Despite no change in MV˙o 2, there was a switch from lactate uptake (5.9 ± 3.1) to production (74.5 ± 16.3 μmol/min), glycogen depletion (66%), and increased glucose uptake (105%), but no change in anterior wall power or the index of anterior wall energy efficiency. There was no change in the rate of tracer-measured fatty acid uptake; however, exogenous fatty acid oxidation decreased by 71%. Thus demand-induced ischemia stimulated nonoxidative glycolysis and lactate production, but did not effect fatty acid uptake despite a fall in exogenous fatty acid oxidation.


1998 ◽  
Vol 275 (5) ◽  
pp. E798-E805 ◽  
Author(s):  
Labros S. Sidossis ◽  
Bettina Mittendorfer ◽  
Eric Walser ◽  
David Chinkes ◽  
Robert R. Wolfe

The effect of hyperglycemia (∼8 mmol/l) on splanchnic fatty acid oxidation and triacylglycerol (TG) secretion rates was investigated in five healthy men. U-13C-labeled fatty acids were infused to estimate fatty acid kinetics and oxidation across the splanchnic region, and in vivo labeled very low density lipoprotein (VLDL)-TG was infused to estimate TG secretion rate. Plasma fatty acid carbon enrichment and concentration were maintained constant by infusion of lipids and heparin in the hyperglycemia experiments. Fatty acid uptake by the splanchnic region was 1.4 ± 0.2 and 2.2 ± 0.9 μmol ⋅ kg−1⋅ min−1in the basal and clamp experiments, respectively, whereas fatty acid oxidation decreased from 0.4 ± 0.04 to 0.2 ± 0.05 μmol ⋅ kg−1⋅ min−1( P < 0.05). Hepatic TG secretion increased from 0.35 ± 0.07 μmol ⋅ kg−1⋅ min−1in the basal state to 0.53 ± 0.11 μmol ⋅ kg−1⋅ min−1after 15 h of hyperglycemia ( P< 0.05). Similarly, plasma VLDL-TG concentration increased from 0.28 ± 0.06 to 0.43 ± 0.05 mmol/l during the clamp ( P < 0.05). In summary, hyperglycemia attenuates fatty acid oxidation in the splanchnic region in human volunteers, even when fatty acid availability is constant. This adaptation results in a significant increase in the VLDL-TG secretion rate and concentration in plasma.


2016 ◽  
Vol 36 (21) ◽  
pp. 2715-2727 ◽  
Author(s):  
Wojciech G. Garbacz ◽  
Peipei Lu ◽  
Tricia M. Miller ◽  
Samuel M. Poloyac ◽  
Nicholas S. Eyre ◽  
...  

The common complications in obesity and type 2 diabetes include hepatic steatosis and disruption of glucose-glycogen homeostasis, leading to hyperglycemia. Fatty acid translocase (FAT/CD36), whose expression is inducible in obesity, is known for its function in fatty acid uptake. Previous work by us and others suggested that CD36 plays an important role in hepatic lipid homeostasis, but the results have been conflicting and the mechanisms were not well understood. In this study, by using CD36-overexpressing transgenic (CD36Tg) mice, we uncovered a surprising function of CD36 in regulating glycogen homeostasis. Overexpression of CD36 promoted glycogen synthesis, and as a result, CD36Tg mice were protected from fasting hypoglycemia. When challenged with a high-fat diet (HFD), CD36Tg mice showed unexpected attenuation of hepatic steatosis, increased very low-density lipoprotein (VLDL) secretion, and improved glucose tolerance and insulin sensitivity. The HFD-fed CD36Tg mice also showed decreased levels of proinflammatory hepatic prostaglandins and 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictive and proinflammatory arachidonic acid metabolite. We propose that CD36 functions as a protective metabolic sensor in the liver under lipid overload and metabolic stress. CD36 may be explored as a valuable therapeutic target for the management of metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document