scholarly journals Quaternary structure of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa and its reoxidation with a novel cytochrome c from this organism

1993 ◽  
Vol 290 (1) ◽  
pp. 123-127 ◽  
Author(s):  
J M J Schrover ◽  
J Frank ◽  
J E van Wielink ◽  
J A Duine

Quinoprotein (2,7,9-tricarboxy-1H-pyrrolo-[2,3-f]quinoline-4,5-dione quinone form (PQQ)-containing) ethanol dehydrogenase (EDH) from Pseudomonas aeruginosa ATCC 17933 was purified to homogeneity. EDH has an alpha 2 beta 2 configuration and subunits comparable in size to those of methanol dehydrogenase (MDH). Compared with other PQQ-containing dehydrogenases, Ca2+ is rather loosely bound and it seems necessary for PQQ binding and stability of EDH. Two soluble cytochromes c were detected in extracts from ethanol-grown cells and both were purified. One of these has an alpha-band at 551 nm for its reduced form, the oxidized form being an excellent electron acceptor for the semiquinone form of EDH. Since this cytochrome is quite different from the already known cytochrome c551 (operating in nitrate respiration) of this organism, it is indicated here as cytochrome cEDH. Comparison of the N-terminal amino acid sequence of cytochrome cEDH with the complete sequence of cytochrome cL (the electron acceptor of MDH), cytochrome cH (the electron acceptor of cytochrome cL) and cytochrome c551 revealed some similarity only to internal stretches of amino acids of the last two. The other soluble cytochrome appeared to be the already-known cytochrome c556. Since it was not an electron acceptor for cytochrome cEDH (neither for EDH), cytochrome cH is lacking in the quinoprotein-EDH-ethanol oxidation system of P. aeruginosa. It seems, therefore, that the respiratory chains for MDH and EDH are different.

2013 ◽  
Vol 57 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Jianhui Xiong ◽  
David C. Alexander ◽  
Jennifer H. Ma ◽  
Maxime Déraspe ◽  
Donald E. Low ◽  
...  

ABSTRACTPseudomonas aeruginosa96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 ofPseudomonas fluorescensSBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. TheblaIMP-9-carrying integron containedaacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRAand downstream by a completetnioperon of Tn402and amermodule, named Tn6016. The second integron carriedaacA4→catB8a→blaOXA-10and was flanked by Tn1403-liketnpRAand asul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and twopiloperons. The replication and maintenance systems exhibit similarity to a genomic island ofRalstonia solanacearumGM1000. Codon usage analysis suggests the recent acquisition ofblaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Nicole Gliese ◽  
Viola Khodaverdi ◽  
Max Schobert ◽  
Helmut Görisch

The response regulator AgmR was identified to be involved in the regulation of the quinoprotein ethanol oxidation system of Pseudomonas aeruginosa ATCC 17933. Interruption of the agmR gene by insertion of a kanamycin-resistance cassette resulted in mutant NG3, unable to grow on ethanol. After complementation with the intact agmR gene, growth on ethanol was restored. Transcriptional lacZ fusions were used to identify four operons which are regulated by the AgmR protein: the exaA operon encodes the pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the exaBC operon encodes a soluble cytochrome c 550 and an aldehyde dehydrogenase, the pqqABCDE operon carries the PQQ biosynthetic genes, and operon exaDE encodes a two-component regulatory system which controls transcription of the exaA operon. Transcription of exaA was restored by transformation of NG3 with a pUCP20T derivative carrying the exaDE genes under lac-promoter control. These data indicate that the AgmR response regulator and the exaDE two-component regulatory system are organized in a hierarchical manner. Gene PA1977, which appears to form an operon with the agmR gene, was found to be non-essential for growth on ethanol.


1993 ◽  
Vol 289 (1) ◽  
pp. 173-178 ◽  
Author(s):  
P Reichmann ◽  
H Görisch

In cells of Pseudomonas aeruginosa A.T.C.C. 17933 grown on ethanol the synthesis of a soluble c-type cytochrome, together with quinoprotein ethanol dehydrogenase, is induced. The cytochrome, with an alpha-absorption band at 550 nm, was purified to homogeneity. The molecular mass of the monomeric protein is 15 kDa, the pI is 4.8, and it contains one haem prosthetic group. The midpoint potential of the autoxidizable, but not autoreducible, cytochrome is 280 mV. Cytochrome c550 mediates electron transfer between quinoprotein ethanol dehydrogenase and ferricyanide. In a system composed of membrane particles with NN‘NN’-tetramethyl-p-phenylenediamine oxidase activity and quinoprotein ethanol dehydrogenase, oxygen consumption is only observed in the presence of cytochrome c550. This indicates the participation of the cytochrome in the electron-transport chain linked to quinoprotein ethanol dehydrogenase in P. aeruginosa. The electron transport from ethanol dehydrogenase to oxygen is inhibited by myxothiazol and antimycin, indicating that a cytochrome bc1-like complex is involved.


2007 ◽  
Vol 189 (11) ◽  
pp. 4310-4314 ◽  
Author(s):  
Kerstin Schreiber ◽  
Robert Krieger ◽  
Beatrice Benkert ◽  
Martin Eschbach ◽  
Hiroyuki Arai ◽  
...  

ABSTRACT In Pseudomonas aeruginosa, the narK 1 K 2 GHJI operon encodes two nitrate/nitrite transporters and the dissimilatory nitrate reductase. The narK 1 promoter is anaerobically induced in the presence of nitrate by the dual activity of the oxygen regulator Anr and the N-oxide regulator Dnr in cooperation with the nitrate-responsive two-component regulatory system NarXL. The DNA bending protein IHF is essential for this process. Similarly, narXL gene transcription is enhanced under anaerobic conditions by Anr and Dnr. Furthermore, Anr and NarXL induce expression of the N-oxide regulator gene dnr. Finally, NarXL in cooperation with Dnr is required for anaerobic nitrite reductase regulatory gene nirQ transcription. A cascade regulatory model for the fine-tuned genetic response of P. aeruginosa to anaerobic growth conditions in the presence of nitrate was deduced.


1989 ◽  
Vol 205 (3) ◽  
pp. 617-618 ◽  
Author(s):  
John J. Stezowski ◽  
Helmut Görisch ◽  
Zbigniew Dauter ◽  
Michael Rupp ◽  
Andrea Hoh ◽  
...  

2000 ◽  
Vol 182 (21) ◽  
pp. 6066-6074 ◽  
Author(s):  
Andrew M. Kropinski

ABSTRACT Temperate bacteriophage D3, a member of the virus familySiphoviridae, is responsible for serotype conversion in its host, Pseudomonas aeruginosa. The complete sequence of the double-stranded DNA genome has been determined. The 56,426 bp contains 90 putative open reading frames (ORFs) and four genes specifying tRNAs. The latter are specific for methionine (AUG), glycine (GGA), asparagine (AAC), and threonine (ACA). The tRNAs may function in the translation of certain highly expressed proteins from this relatively AT-rich genome. D3 proteins which exhibited a high degree of sequence similarity to previously characterized phage proteins included the portal, major head, tail, and tail tape measure proteins, endolysin, integrase, helicase, and NinG. The layout of genes was reminiscent of lambdoid phages, with the exception of the placement of the endolysin gene, which parenthetically also lacked a cognate holin. The greatest sequence similarity was found in the morphogenesis genes to coliphages HK022 and HK97. Among the ORFs was discovered the gene encoding the fucosamine O-acetylase, which is in part responsible for the serotype conversion events.


2005 ◽  
Vol 187 (4) ◽  
pp. 1455-1464 ◽  
Author(s):  
Erin J. van Schaik ◽  
Carmen L. Giltner ◽  
Gerald F. Audette ◽  
David W. Keizer ◽  
Daisy L. Bautista ◽  
...  

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa produces multifunctional, polar, filamentous appendages termed type IV pili. Type IV pili are involved in colonization during infection, twitching motility, biofilm formation, bacteriophage infection, and natural transformation. Electrostatic surface analysis of modeled pilus fibers generated from P. aeruginosa strain PAK, K122-4, and KB-7 pilin monomers suggested that a solvent-exposed band of positive charge may be a common feature of all type IV pili. Several functions of type IV pili, including natural transformation and biofilm formation, involve DNA. We investigated the ability of P. aeruginosa type IV pili to bind DNA. Purified PAK, K122-4, and KB-7 pili were observed to bind both bacterial plasmid and salmon sperm DNA in a concentration-dependent and saturable manner. PAK pili had the highest affinity for DNA, followed by K122-4 and KB-7 pili. DNA binding involved backbone interactions and preferential binding to pyrimidine residues even though there was no evidence of sequence-specific binding. Pilus-mediated DNA binding was a function of the intact pilus and thus required elements present in the quaternary structure. However, binding also involved the pilus tip as tip-specific, but not base-specific, antibodies inhibited DNA binding. The conservation of a Thr residue in all type IV pilin monomers examined to date, along with the electrostatic data, implies that DNA binding is a conserved function of type IV pili. Pilus-mediated DNA binding could be important for biofilm formation both in vivo during an infection and ex vivo on abiotic surfaces.


1995 ◽  
Vol 312 (1) ◽  
pp. 261-265 ◽  
Author(s):  
S L Dales ◽  
C Anthony

A fluorescence method is described for direct measurement of the interaction between methanol dehydrogenase (MDH) and its electron acceptor cytochrome cL. This has permitted a distinction to be made between factors affecting electron transfer and those affecting the initial binding or docking process. It was confirmed that the initial interaction is electrostatic, but previous conclusions with respect to the mechanism of EDTA inhibition have been modified. It is proposed that the initial ‘docking’ of MDH and cytochrome cL is by way of ionic interactions between lysyl residues on its surface and carboxylate groups on the surface of cytochrome cL. This interaction is not inhibited by EDTA, which we suggest acts by binding to nearby lysyl residues, thus preventing movement of the ‘docked’ cytochrome to its optimal position for electron transfer, which probably involves interaction with the hydrophobic funnel in the surface of MDH.


2009 ◽  
Vol 75 (11) ◽  
pp. 3641-3647 ◽  
Author(s):  
Gary A. Icopini ◽  
Joe G. Lack ◽  
Larry E. Hersman ◽  
Mary P. Neu ◽  
Hakim Boukhalfa

ABSTRACT We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.


Sign in / Sign up

Export Citation Format

Share Document