scholarly journals Stable expression of protective protein/cathepsin A–green fluorescent protein fusion genes in a fibroblastic cell line from a galactosialidosis patient. Model system for revealing the intracellular transport of normal and mutated lysosomal enzymes

1999 ◽  
Vol 340 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Yasunori NAGANAWA ◽  
Kohji ITOH ◽  
Michie SHIMMOTO ◽  
Sachiko KAMEI ◽  
Kyoko TAKIGUCHI ◽  
...  

Fibroblastic cell lines derived from a galactosialidosis patient, stably expressing the chimaeric green fluorescent protein variant (EGFP) gene fused to the wild-type and mutant human lysosomal protective protein/cathepsin A (PPCA) cDNA, were first established as a model system for revealing the sorting and processing of lysosomal enzymes and for investigating the molecular bases of their deficiencies. In the cell line expressing the wild-type PPCA-EGFP chimaera gene (EGFP-PPwild), an 81 kDa form (27 kDa EGFP fused to the C-terminus of the 54 kDa PPCA precursor) was produced, then processed into the mature 32/20 kDa two-chain form free of the EGFP domain. The intracellular cathepsin A, α-N-acetylneuraminidase and β-galactosidase activities, which are deficient in the parent fibroblastic cells, could also be significantly restored in the cells. In contrast with the uniform and strong fluorescence throughout the cytoplasm and nucleus in the mock-cell line expressing only EGFP cDNA, weak reticular and punctate fluorescence was distributed throughout the EGFP-PPwild cell line. Bafilomycin A1, a potent inhibitor of vacuolar ATPase and intracellular acidification, induced the distribution of Golgi-like perinuclear fluorescence throughout the living and fixed cells, in which only the 81 kDa product was detected. After removal of the agent, time-dependent transport of the chimaeric protein from the Golgi apparatus to the prelysosomal structure in living cells was monitored with a confocal laser scanning microscope system. Leupeptin caused the distribution of lysosome-like granular fluorescence throughout the cytoplasm in the fixed cells, although it was hardly observed in living cells. The latter agent also dose-dependently induced an increase in the intracellular amount of the 81 kDa product containing the EGFP domain and inhibited the restoration of cathepsin A activity in the EGFP-PPwild cells after the removal of bafilomycin A1. In parallel, both the mature two-chain form and PPCA function disappeared. These results suggested that the chimaera gene product was transported to acidic compartments (endosomes/lysosomes), where proteolytic processing of the PPCA precursor/zymogen, quenching of the fluorescence, and random degradation of the EGFP portion occurred. A cell line stably expressing a chimaeric gene with a mutant PPCA cDNA containing an A1184 → G (Y395C) mutation, commonly detected in Japanese severe early-infantile type of galactosialidosis patients, showed an endoplasmic reticulum (ER)-like reticular fluorescence pattern. The PPCA-immunoreactive gene product was hardly detected in this cell line. The mutant chimaeric product was suggested to be degraded rapidly in the ER before transport to post-ER compartments. A cell line expressing the chimaeric gene with a T746 → A (Y249N) PPCA mutation exhibited both ER-like reticular and granular fluorescence on the reticular structure that was stronger than that in the EGFP-PPwild cells. Some of them contained large fluorescent inclusion-body-like structures. The ineffectiveness of transport inhibitors in the distribution changes in the two mutant chimaeric proteins suggested that they were not delivered to acidic compartments. Therefore this expression system can possibly be applied to the direct analysis of the sorting defects of mutant gene products in living cells and will be useful for the molecular investigation of lysosomal diseases, including galactosialidosis.

Cytometry ◽  
2001 ◽  
Vol 45 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Christopher J. Donahue ◽  
Maxine Santoro ◽  
Donald Hupe ◽  
Jay M. Jones ◽  
Brian Pollok ◽  
...  

2011 ◽  
Vol 17 (3) ◽  
pp. 283-292 ◽  
Author(s):  
V. Leardkamolkarn ◽  
W. Sirigulpanit

This study aimed to generate a stable cell line harboring subgenomic dengue virus replicon and a green fluorescent gene (DENV/GFP) for a cell-based model to screen anti-DENV compounds. The gene-encoding envelope protein of DENV-2 was deleted and then replaced with fragments of the GFP gene and a foot-and-mouth-disease virus 2A–derived cleavage site. The human cytomegalovirus immediate early and antisense hepatitis delta virus ribozyme sequences were added at the 5′- and 3′-ends. An internal ribosome entry site and neomycin resistance genes were placed upstream and next to the NS1 gene. The recombinant plasmids were propagated in a mammalian cell line. A stable cell line with the brightest green fluorescent protein and the highest viral protein and RNA expression was selected from six clones. The clone was then examined for effectiveness in an antiviral drug screening assay with compounds isolated from the local plants using two known antiviral agents as controls. Two novel flavones, PMF and TMF, were discovered having DENV-inhibitory properties. The data were validated by a conventional plaque titration assay. The results indicate that this newly developed cell line is efficient for use as a cell-based model for primary screening of anti-DENV compounds.


1998 ◽  
Vol 143 (1) ◽  
pp. 147-157 ◽  
Author(s):  
Miri Yoon ◽  
Robert D. Moir ◽  
Veena Prahlad ◽  
Robert D. Goldman

The motile properties of intermediate filament (IF) networks have been studied in living cells expressing vimentin tagged with green fluorescent protein (GFP-vimentin). In interphase and mitotic cells, GFP-vimentin is incorporated into the endogenous IF network, and accurately reports the behavior of IF. Time-lapse observations of interphase arrays of vimentin fibrils demonstrate that they are constantly changing their configurations in the absence of alterations in cell shape. Intersecting points of vimentin fibrils, or foci, frequently move towards or away from each other, indicating that the fibrils can lengthen or shorten. Fluorescence recovery after photobleaching shows that bleach zones across fibrils rapidly recover their fluorescence. During this recovery, bleached zones frequently move, indicating translocation of fibrils. Intriguingly, neighboring fibrils within a cell can exhibit different rates and directions of movement, and they often appear to extend or elongate into the peripheral regions of the cytoplasm. In these same regions, short filamentous structures are also seen actively translocating. All of these motile properties require energy, and the majority appear to be mediated by interactions of IF with microtubules and microfilaments.


2016 ◽  
Vol 90 (22) ◽  
pp. 10182-10192 ◽  
Author(s):  
Oana Maier ◽  
Patricia J. Sollars ◽  
Gary E. Pickard ◽  
Gregory A. Smith

ABSTRACTA complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kineticsin vitroand approximated wild-type virulencein vivo. The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation.IMPORTANCEThe familyHerpesviridaeconsists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


2005 ◽  
Vol 187 (22) ◽  
pp. 7647-7654 ◽  
Author(s):  
Daisuke Shiomi ◽  
Satomi Banno ◽  
Michio Homma ◽  
Ikuro Kawagishi

ABSTRACT In the chemotaxis of Escherichia coli, polar clustering of the chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW is thought to be involved in signal amplification and adaptation. However, the mechanism that leads to the polar localization of the receptor is still largely unknown. In this study, we examined the effect of receptor covalent modification on the polar localization of the aspartate chemoreceptor Tar fused to green fluorescent protein (GFP). Amidation (and presumably methylation) of Tar-GFP enhanced its own polar localization, although the effect was small. The slight but significant effect of amidation on receptor localization was reinforced by the fact that localization of a noncatalytic mutant version of GFP-CheR that targets to the C-terminal pentapeptide sequence of Tar was similarly facilitated by receptor amidation. Polar localization of the demethylated version of Tar-GFP was also enhanced by increasing levels of the serine chemoreceptor Tsr. The effect of covalent modification on receptor localization by itself may be too small to account for chemotactic adaptation, but receptor modification is suggested to contribute to the molecular assembly of the chemoreceptor/histidine kinase array at a cell pole, presumably by stabilizing the receptor dimer-to-dimer interaction.


Sign in / Sign up

Export Citation Format

Share Document