scholarly journals Upstream stimulatory factor regulates Pdx-1 gene expression in differentiated pancreatic β-cells

1999 ◽  
Vol 341 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Jin QIAN ◽  
Elizabeth N. KAYTOR ◽  
Howard C. TOWLE ◽  
L. Karl OLSON

The homeobox gene Pdx-1 plays a key role in the development of the pancreas. In the adult, however, expression of the Pdx-1 gene is restricted to pancreatic β-cells and endocrine cells of duodenal epithelium. Recently, the transcription factor, upstream stimulatory factor (USF), has been shown to bind invitro to a mutationally sensitive E-box motif within the 5′-flanking region of the Pdx-1 gene [Sharma, Leonard, Lee, Chapman, Leiter and Montminy (1996) J. Biol. Chem. 271, 2294-2299]. In the present study, we show that USF not only binds to the Pdx-1 gene promoter but also functionally regulates the expression of the Pdx-1 gene in differentiated pancreatic β-cells. Adenovirus-mediated overexpression of a dominant negative form of USF2 decreased binding of endogenous USF to the E-box element by ~ 90%. This reduction in endogenous USF binding led to a greater than 50% decrease in Pdx-1 gene promoter activity, which, in turn, resulted in marked reductions in Pdx-1 mRNA and protein levels. Importantly, the lower Pdx-1 protein levels led to a greater than 50% reduction in Pdx-1 binding activity to the A3 element on the insulin gene promoter, and a significant reduction in insulin mRNA levels. Overall, our results show that USF functionally regulates Pdx-1 gene expression in differentiated pancreatic β-cells and provide the first functional data for a role of USF in the regulation of a normal cellular gene.

2003 ◽  
Vol 17 (5) ◽  
pp. 945-958 ◽  
Author(s):  
Birgitte N. Friedrichsen ◽  
Henrijette E. Richter ◽  
Johnny A. Hansen ◽  
Christopher J. Rhodes ◽  
Jens H. Nielsen ◽  
...  

Abstract Signal transducer and activator of transcription 5 (STAT5) activation plays a central role in GH- and prolactin-mediated signal transduction in the pancreatic β-cells. In previous experiments we demonstrated that STAT5 activation is necessary for human (h)GH-stimulated proliferation of INS-1 cells and hGH-induced increase of mRNA-levels of the cell cycle regulator cyclin D2. In this study we have further characterized the role of STAT5 in the regulation of cyclin D expression and β-cell proliferation by hGH. Cyclin D2 mRNA and protein levels (but not cyclin D1 and D3) were induced in a time-dependent manner by hGH in INS-1 cells. Inhibition of protein synthesis by coincubation with cycloheximide did not affect the hGH-induced increase of cyclin D2 mRNA levels at 4 h. Expression of a dominant negative STAT5 mutant, STAT5aΔ749, partially inhibited cyclin D2 protein levels. INS-1 cells transiently transfected with a cyclin D2 promoter-reporter construct revealed a 3- to 5-fold increase of transcriptional activity in response to hGH stimulation. Furthermore, coexpression of a constitutive active STAT5 mutant (either CA-STAT5a or CA-STAT5b) was sufficient to drive transactivation of the promoter. CA-STAT5b was stably expressed in INS-1 cells under the control of a doxycycline-inducible promoter. Gel retardation experiments using a probe representing a putative STAT5 binding site in the cyclin D2 promoter revealed binding of the doxycycline-induced CA-STAT5b. Furthermore, induction of CA-STAT5b stimulated transcriptional activation of the cyclin D2 promoter and induced hGH-independent proliferation in these cells. In primary β-cells, adenovirus-mediated expression of CA-STAT5b profoundly stimulated DNA-synthesis (5.3-fold over control) in the absence of hGH. Our studies indicate that STAT5 activation is sufficient to drive proliferation of the β-cells and that cyclin D2 may be a critical target gene for STAT5 in this process.


1999 ◽  
Vol 341 (2) ◽  
pp. 315 ◽  
Author(s):  
Jin QIAN ◽  
Elizabeth N. KAYTOR ◽  
Howard C. TOWLE ◽  
L. Karl OLSON

2003 ◽  
Vol 369 (3) ◽  
pp. 549-561 ◽  
Author(s):  
Judy M. COULSON ◽  
Jodie L. EDGSON ◽  
Zoe V. MARSHALL-JONES ◽  
Robert MULGREW ◽  
John P. QUINN ◽  
...  

We have described previously a complex E-box enhancer (-147) of the vasopressin promoter in small-cell lung cancer (SCLC) extracts [Coulson, Fiskerstrand, Woll and Quinn, (1999) Biochem. J. 344, 961—970]. Upstream stimulatory factor (USF) heterodimers were one of the complexes binding to this site in vitro. We now report that USF overexpression in non-SCLC (NSCLC) cells can functionally activate vasopressin promoter-driven reporters that are otherwise inactive in this type of lung cancer cell. Site-directed mutagenesis and electrophoretic mobility-shift analysis demonstrate that although the −147 E-box contributes, none of the previously predicted E-boxes (-147, −135, −34) wholly account for this USF-mediated activation in NSCLC. 5′ Deletion showed the key promoter region as −52 to +42; however, USF-2 binding was not reliant on the −34 E-box, but on a novel adjacent CACGGG non-canonical E-box at −42 (motif E). This mediated USF binding in both SCLC and USF-2-transfected NSCLC cells. Mutation of motif E or the non-canonical TATA box abolished activity, implying both are required for transcriptional initiation on overexpression of USF-2. Co-transfected dominant negative USF confirmed that binding was required through motif E for function, but that the classical activation domain of USF was not essential. USF-2 bound motif E with 10-fold lower affinity than the −147 E-box. In NSCLC, endogenous USF-2 expression is low, and this basal level appears to be insufficient to activate transcription of arginine vasopressin (AVP). In summary, we have demonstrated a novel mechanism for USF activation, which contributes to differential vasopressin expression in lung cancer.


2021 ◽  
Author(s):  
Xiaoxi Xu ◽  
Yumeng Huang ◽  
Xin Li ◽  
Peter Arvan ◽  
Ming Liu

In the endoplasmic reticulum (ER), the Translocation-Associated Protein complex (TRAP, also called Signal sequence receptor, SSR) includes four integral membrane proteins TRAPα/SSR1, TRAPβ/SSR2 and TRAPδ/SSR4 with the bulk of their extramembranous portions primarily in the ER lumen, whereas the extramembranous portion of TRAPγ/SSR3 is primarily cytosolic. Individually diminished expression of either TRAPα/SSR1, TRAPβ/SSR2 or TRAPδ/SSR4 mRNA is known in each case to lower TRAPα/SSR1 protein levels leading to impaired proinsulin biosynthesis, whereas forced expression of TRAPα/SSR1 at least partially suppresses the proinsulin biosynthetic defect. Here we report that diminished TRAPγ/SSR3 expression in pancreatic β-cells leaves TRAPα/SSR1 levels unaffected while nevertheless inhibiting co-translational and post-translational translocation of preproinsulin into the ER. Crucially, acute exposure to high glucose leads to a rapid upregulation of both TRAPγ/SSR3 and proinsulin protein without change in the respective mRNA levels — observed in cultured rodent β-cell lines and confirmed in human islets. Strikingly, pancreatic β-cells with suppressed TRAPγ/SSR3 expression are blocked in glucose-dependent upregulation of proinsulin (or insulin) biosynthesis. Most remarkable, overexpression of TRAPγ/SSR3 in control β-cells raises proinsulin levels even without boosting extracellular glucose. The data suggest the possibility that TRAPγ/SSR3 may fulfill a rate-limiting function in preproinsulin translocation across the ER membrane for proinsulin biosynthesis.


2010 ◽  
Vol 299 (1) ◽  
pp. F121-F127 ◽  
Author(s):  
Yanzhang Li ◽  
Shuxia Wang

Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. We previously demonstrated that a transcription factor called upstream stimulatory factor 2 (USF2) was upregulated in the kidneys from diabetic animals in vivo as well as in mesangial cells (MCs) exposed to high-glucose media in vitro. USF2 mediates glucose-induced thrombospondin 1 expression and transforming growth factor-β activity in MCs and plays a role in DN. Glycated proteins have been shown to accumulate in the kidneys of diabetic patients and contribute to DN. However, whether glycated proteins regulate USF2 expression in MCs and play a role in DN is unknown. In the present studies, we determined the effect of glycated albumin on UFS2 gene expression in primary rat MCs. We found that glycated albumin upregulated USF2 expression (mRNA and protein) in a dose- and time-dependent manner. We also demonstrated that glycated albumin stimulated USF2 gene expression at the transcriptional level. By using the luciferase-promoter deletion assay, site-directed mutagenesis, and transactivation assay, we identified a glycated albumin-responsive region in the USF2 gene promoter (−837 to −430, relative to the transcription start site) and demonstrated that glycated albumin-induced USF2 expression was mediated through NF-κB-dependent transactivation of the USF2 promoter. Furthermore, glycated albumin increased nuclear NF-κB subunit-p65 protein levels. siRNA-mediated p65 knockdown prevented glycated albumin-induced USF2 gene expression (promoter activity, mRNA, and protein levels). Taken together, these data suggest that glycated albumin upregulated USF2 gene transcription in MCs through NF-κB-dependent transactivation of the USF2 promoter.


2005 ◽  
Vol 153 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Kohei Ueda ◽  
June Kawano ◽  
Komei Takeda ◽  
Toshiaki Yujiri ◽  
Katsuya Tanabe ◽  
...  

Objective: The WFS1 gene encodes an endoplasmic reticulum (ER) membrane-embedded protein. Homozygous WFS1 gene mutations cause Wolfram syndrome, characterized by insulin-deficient diabetes mellitus and optic atropy. Pancreatic β-cells are selectively lost from the patient’s islets. ER localization suggests that WFS1 protein has physiological functions in membrane trafficking, secretion, processing and/or regulation of ER calcium homeostasis. Disturbances or overloading of these functions induces ER stress responses, including apoptosis. We speculated that WFS1 protein might be involved in these ER stress responses. Design and methods: Islet expression of the Wfs1 protein was analyzed immunohistochemically. Induction of Wfs1 upon ER stress was examined by Northern and Western blot analyses using three different models: human skin fibroblasts, mouse pancreatic β-cell-derived MIN6 cells, and Akita mouse-derived Ins2 96Y/Y insulinoma cells. The human WFS1 gene promoter-luciferase reporter analysis was also conducted. Result: Islet β-cells were the major site of Wfs1 expression. This expression was also found in δ-cells, but not in α-cells. WFS1 expression was transcriptionally up-regulated by ER stress-inducing chemical insults. Treatment of fibroblasts and MIN6 cells with thapsigargin or tunicamycin increased WFS1 mRNA. WFS1 protein also increased in response to thapsigargin treatment in these cells. WFS1 gene expression was also increased in Ins2 96Y/Y insulinoma cells. In these cells, ER stress was intrinsically induced by mutant insulin expression. The WFS1 gene promoter-luciferase reporter system revealed that the human WFS1 promoter was activated by chemically induced ER stress in MIN6 cells, and that the promoter was more active in Ins2 96Y/Y cells than Ins2 wild/wild cells. Conclusion: Wfs1 expression, which is localized to β- and δ-cells in pancreatic islets, increases in response to ER stress, suggesting a functional link between Wfs1 and ER stress.


2012 ◽  
Vol 446 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Bohao Chen ◽  
Rona Hsu ◽  
Zhenping Li ◽  
Paul C. Kogut ◽  
Qingxia Du ◽  
...  

Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp −118 to −113 in mice; bp −164 to −159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5′-CACGTG-3′), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)–PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.


1998 ◽  
Vol 12 (5) ◽  
pp. 714-726 ◽  
Author(s):  
Adrienne N. Harris ◽  
Pamela L. Mellon

Abstract Tissue-specific expression of the mammalian FTZ-F1 gene is essential for adrenal and gonadal development and sexual differentiation. The FTZ-F1 gene encodes an orphan nuclear receptor, termed SF-1 (steroidogenic factor-1) or Ad4BP, which is a primary transcriptional regulator of several hormone and steroidogenic enzyme genes that are critical for normal physiological function of the hypothalamic-pituitary-gonadal axis in reproduction. The objective of the current study is to understand the molecular mechanisms underlying transcriptional regulation of SF-1 gene expression in the pituitary. We have studied a series of deletion and point mutations in the SF-1 promoter region for transcriptional activity in αT3–1 and LβT2 (pituitary gonadotrope), CV-1, JEG-3, and Y1 (adrenocortical) cell lines. Our results indicate that maximal expression of the SF-1 promoter in all cell types requires an E box element at −82/−77. This E box sequence (CACGTG) is identical to the binding element for USF (upstream stimulatory factor), a member of the helix-loop-helix family of transcription factors. Studies of the SF-1 gene E box element using gel mobility shift and antibody supershift assays indicate that USF may be a key transcriptional regulator of SF-1 gene expression.


2003 ◽  
Vol 371 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Cyrus C. MARTIN ◽  
Christina A. SVITEK ◽  
James K. OESER ◽  
Eva HENDERSON ◽  
Roland STEIN ◽  
...  

Islet-specific glucose-6-phosphatase (G6Pase) catalytic-subunit-related protein (IGRP) is a homologue of the catalytic subunit of G6Pase, the enzyme that catalyses the final step of the gluconeogenic pathway. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion-gene expression through transient transfection of islet-derived βTC-3 cells revealed that multiple promoter regions, located between −306 and −97, are required for maximal IGRP-CAT fusion-gene expression. These regions correlated with trans-acting factor-binding sites in the IGRP promoter that were identified in βTC-3 cells in situ using the ligation-mediated PCR (LMPCR) footprinting technique. However, the LMPCR data also revealed additional trans-acting factor-binding sites located between −97 and +1 that overlap two E-box motifs, even though this region by itself conferred minimal fusion-gene expression. The data presented here show that these E-box motifs are important for IGRP promoter activity, but that their action is only manifest in the presence of distal promoter elements. Thus mutation of either E-box motif in the context of the −306 to +3 IGRP promoter region reduces fusion-gene expression. These two E-box motifs have distinct sequences and preferentially bind NeuroD/BETA2 neurogenic differentiation/β-cell E box transactivator 2 and upstream stimulatory factor (USF) in vitro, consistent with the binding of both factors to the IGRP promoter in situ, as determined using the chromatin-immunoprecipitation (ChIP) assay. Based on experiments using mutated IGRP promoter constructs, we propose a model to explain how the ubiquitously expressed USF could contribute to islet-specific IGRP gene expression.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
Melissa K. Thomas ◽  
Jee H. Lee ◽  
Naina Rastalsky ◽  
Joel F. Habener

Abstract Insulin gene expression in pancreatic β-cells is regulated by signals from developmental morphogen proteins known as hedgehogs (Hhs). By analyzing 5′-deletion insulin promoter-reporter constructs in transient transfections of clonal INS-1 β-cells, we located activating Hh-responsive regions within the rat insulin I promoter that include the glucose-response elements Far (E2) and Flat (A2/A3). Activation of Hh signaling in INS-1 cells by ectopic Hh expression increased (and inhibition of Hh signaling with the Hh-specific inhibitor cyclopamine decreased) transcriptional activation of a multimerized FarFlat enhancer-reporter construct. In DNA-binding studies, nuclear extracts from INS-1 cells activated by ectopic Hh expression increased (and extracts from INS-1 cells treated with cyclopamine decreased) protein binding to a radiolabeled FarFlat oligonucleotide probe. An antiserum directed against the transcription factor islet duodenum homeobox-1 (IDX-1), a regulator of pancreas development and activator of the insulin gene promoter, attenuated the binding activity of Hh-responsive protein complexes. Nuclear IDX-1 protein levels on Western blots were increased by ectopic Hh expression, thereby providing a mechanism for Hh-mediated regulation of the insulin promoter. Addition of cyclopamine to INS-1 cells decreased IDX-1 messenger RNA expression. In transient transfections of a− 4.5-kb mouse IDX-1 promoter-reporter construct, ectopic Hh expression increased (and cyclopamine administration decreased) transcriptional activation of the IDX-1 promoter in a dose-dependent manner. Thus, the IDX-1 gene is a direct regulatory target of Hh signaling in insulin-producing pancreatic β-cells. We propose that Hh signaling activates the insulin gene promoter indirectly via the direct activation of IDX-1 expression. Because IDX-1 gene expression is essential for insulin gene expression, pancreatic β-cell development, and normal glucose homeostasis, our findings that Hh signaling regulates IDX-1 expression in the endocrine pancreas suggest possible novel therapeutic approaches for diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document