scholarly journals The Basic Helix-Loop-Helix, Leucine Zipper Transcription Factor, USF (Upstream Stimulatory Factor), Is a Key Regulator of SF-1 (Steroidogenic Factor-1) Gene Expression in Pituitary Gonadotrope and Steroidogenic Cells

1998 ◽  
Vol 12 (5) ◽  
pp. 714-726 ◽  
Author(s):  
Adrienne N. Harris ◽  
Pamela L. Mellon

Abstract Tissue-specific expression of the mammalian FTZ-F1 gene is essential for adrenal and gonadal development and sexual differentiation. The FTZ-F1 gene encodes an orphan nuclear receptor, termed SF-1 (steroidogenic factor-1) or Ad4BP, which is a primary transcriptional regulator of several hormone and steroidogenic enzyme genes that are critical for normal physiological function of the hypothalamic-pituitary-gonadal axis in reproduction. The objective of the current study is to understand the molecular mechanisms underlying transcriptional regulation of SF-1 gene expression in the pituitary. We have studied a series of deletion and point mutations in the SF-1 promoter region for transcriptional activity in αT3–1 and LβT2 (pituitary gonadotrope), CV-1, JEG-3, and Y1 (adrenocortical) cell lines. Our results indicate that maximal expression of the SF-1 promoter in all cell types requires an E box element at −82/−77. This E box sequence (CACGTG) is identical to the binding element for USF (upstream stimulatory factor), a member of the helix-loop-helix family of transcription factors. Studies of the SF-1 gene E box element using gel mobility shift and antibody supershift assays indicate that USF may be a key transcriptional regulator of SF-1 gene expression.

2005 ◽  
Vol 35 (1) ◽  
pp. 145-158 ◽  
Author(s):  
Qiaorong Jiang ◽  
Kyeong-Hoon Jeong ◽  
Cheryl D Horton ◽  
Lisa M Halvorson

Luteinizing hormone (LH) plays a central role in the reproductive axis, stimulating both gonadal steroid biosynthesis and the development of mature gametes. Over the past decade, significant progress has been made in characterizing the transcription factors and associated DNA-regulatory sites which mediate expression of the LH β-subunit gene (LHβ). One of these factors, pituitary homeobox 1 (Pitx1), has been shown to stimulate LHβ gene promoter activity, both alone and in synergy with the orphan nuclear receptor, steroidogenic factor-1 (SF-1), and the early growth response gene 1 (Egr-1). Prior reports have attributed the Pitx1 response to a cis-element located at position -101 in the rat LHβ gene promoter. While investigating the role of Pitx1 in regulating rat LHβ gene expression, we observed a small, but significant, residual Pitx1 response despite mutation or deletion of this site. In the studies presented here, we identify the presence of a second functional Pitx1 region spanning positions −73 to −52 in the rat LHβ gene promoter. Based on electrophoretic mobility shift assay, Pitx1 binds to both the initially described 5′Pitx1 site as well as this putative 3′Pitx1 region. In transient transfection analysis, mutation of the LHβ-3′Pitx1 site significantly blunted Pitx1 responsiveness, with elimination of the Pitx1 response in a construct containing mutations in both Pitx1 cis-elements. We also analyzed the importance of each of these Pitx1 sites for providing functional synergy with SF-1 and with Egr-1. We observed a markedly decreased synergistic response with mutation of the 5′Pitx1 site with further loss following mutation of the 3′Pitx1 site. In contrast, functional interaction between Pitx1 and Egr-1 persisted with mutation of both Pitx1 regions. We conclude that Pitx1 stimulates the rat LHβ gene promoter via two Pitx1 DNA-regulatory regions. These results further our understanding of the molecular mechanisms that regulate expression of this critical reproductive gene promoter.


1995 ◽  
Vol 15 (5) ◽  
pp. 2707-2718 ◽  
Author(s):  
P S Naidu ◽  
D C Ludolph ◽  
R Q To ◽  
T J Hinterberger ◽  
S F Konieczny

The basic helix-loop-helix muscle regulatory factor (MRF) gene family encodes four distinct muscle-specific transcription factors known as MyoD, myogenin, Myf-5, and MRF4. These proteins represent key regulatory factors that control many aspects of skeletal myogenesis. Although the MRFs often exhibit overlapping functional activities, their distinct expression patterns during embryogenesis suggest that each protein plays a unique role in controlling aspects of muscle development. As a first step in determining how MRF4 gene expression is developmentally regulated, we examined the ability of the MRF4 gene to be expressed in a muscle-specific fashion in vitro. Our studies show that the proximal MRF4 promoter contains sufficient information to direct muscle-specific expression. Located within the proximal promoter are a single MEF2 site and E box that are required for maximum MRF4 expression. Mutation of the MEF2 site or E box severely impairs the ability of this promoter to produce a muscle-specific response. In addition, the MEF2 site and E box function in concert to synergistically activate the MRF4 gene in nonmuscle cells coexpressing MEF2 and myogenin proteins. Thus, the MRF4 promoter is regulated by the MEF2 and basic helix-loop-helix MRF protein family through a cross-regulatory circuitry. Surprisingly, the MRF4 promoter itself is not transactivated by MRF4, suggesting that this MRF gene is not subject to an autoregulatory pathway as previously implied by other studies. Understanding the molecular mechanisms regulating expression of each MRF gene is central to fully understanding how these factors control developmental events.


2012 ◽  
Vol 446 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Bohao Chen ◽  
Rona Hsu ◽  
Zhenping Li ◽  
Paul C. Kogut ◽  
Qingxia Du ◽  
...  

Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp −118 to −113 in mice; bp −164 to −159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5′-CACGTG-3′), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)–PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.


2003 ◽  
Vol 371 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Cyrus C. MARTIN ◽  
Christina A. SVITEK ◽  
James K. OESER ◽  
Eva HENDERSON ◽  
Roland STEIN ◽  
...  

Islet-specific glucose-6-phosphatase (G6Pase) catalytic-subunit-related protein (IGRP) is a homologue of the catalytic subunit of G6Pase, the enzyme that catalyses the final step of the gluconeogenic pathway. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion-gene expression through transient transfection of islet-derived βTC-3 cells revealed that multiple promoter regions, located between −306 and −97, are required for maximal IGRP-CAT fusion-gene expression. These regions correlated with trans-acting factor-binding sites in the IGRP promoter that were identified in βTC-3 cells in situ using the ligation-mediated PCR (LMPCR) footprinting technique. However, the LMPCR data also revealed additional trans-acting factor-binding sites located between −97 and +1 that overlap two E-box motifs, even though this region by itself conferred minimal fusion-gene expression. The data presented here show that these E-box motifs are important for IGRP promoter activity, but that their action is only manifest in the presence of distal promoter elements. Thus mutation of either E-box motif in the context of the −306 to +3 IGRP promoter region reduces fusion-gene expression. These two E-box motifs have distinct sequences and preferentially bind NeuroD/BETA2 neurogenic differentiation/β-cell E box transactivator 2 and upstream stimulatory factor (USF) in vitro, consistent with the binding of both factors to the IGRP promoter in situ, as determined using the chromatin-immunoprecipitation (ChIP) assay. Based on experiments using mutated IGRP promoter constructs, we propose a model to explain how the ubiquitously expressed USF could contribute to islet-specific IGRP gene expression.


1995 ◽  
Vol 310 (2) ◽  
pp. 401-406 ◽  
Author(s):  
J M Paterson ◽  
C F Morrison ◽  
S C Mendelson ◽  
J McAllister ◽  
J P Quinn

We demonstrate the presence of a functional E box motif in the proximal rat preprotachykinin-A (rPPT) promoter. This element (spanning nucleotides -67 to -47) exhibits the sequence 5′-CACGTG-3′ which is recognized and bound by the basic helix-loop-helix family of regulatory proteins. We also show that at least one of the factors bound to this rPPT promoter element in both HeLa and PC12 nuclear extract is the ubiquitously expressed transcription factor, the upstream stimulatory factor (USF). Mutation of this element by insertion of a 10 bp linker into the E box motif, in an rPPT promoter fragment spanning -865 to +92, destroys the ability of this promoter fragment to support reporter gene expression in a PC12 cell model of rPPT promoter activity. The data indicate that this rPPT E box element is likely to function as an important cis-regulatory domain in the rPPT promoter.


1998 ◽  
Vol 18 (11) ◽  
pp. 6653-6665 ◽  
Author(s):  
Pascal De Santa Barbara ◽  
Nathalie Bonneaud ◽  
Brigitte Boizet ◽  
Marion Desclozeaux ◽  
Brigitte Moniot ◽  
...  

ABSTRACT For proper male sexual differentiation, anti-Müllerian hormone (AMH) must be tightly regulated during embryonic development to promote regression of the Müllerian duct. However, the molecular mechanisms specifying the onset of AMH in male mammals are not yet clearly defined. A DNA-binding element for the steroidogenic factor 1 (SF-1), a member of the orphan nuclear receptor family, located in the AMH proximal promoter has recently been characterized and demonstrated as being essential for AMH gene activation. However, the requirement for a specific promoter environment for SF-1 activation as well as the presence of conserved cis DNA-binding elements in the AMH promoter suggest that SF-1 is a member of a combinatorial protein-protein and protein-DNA complex. In this study, we demonstrate that the canonical SOX-binding site within the human AMH proximal promoter can bind the transcription factor SOX9, a Sertoli cell factor closely associated with Sertoli cell differentiation and AMH expression. Transfection studies with COS-7 cells revealed that SOX9 can cooperate with SF-1 in this activation process. In vitro and in vivo protein-binding studies indicate that SOX9 and SF-1 interact directly via the SOX9 DNA-binding domain and the SF-1 C-terminal region, respectively. We propose that the two transcription factors SOX9 and SF-1 could both be involved in the expression of the AMH gene, in part as a result of their respective binding to the AMH promoter and in part because of their ability to interact with each other. Our work thus identifies SOX9 as an interaction partner of SF-1 that could be involved in the Sertoli cell-specific expression of AMH during embryogenesis.


1999 ◽  
Vol 341 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Jin QIAN ◽  
Elizabeth N. KAYTOR ◽  
Howard C. TOWLE ◽  
L. Karl OLSON

The homeobox gene Pdx-1 plays a key role in the development of the pancreas. In the adult, however, expression of the Pdx-1 gene is restricted to pancreatic β-cells and endocrine cells of duodenal epithelium. Recently, the transcription factor, upstream stimulatory factor (USF), has been shown to bind invitro to a mutationally sensitive E-box motif within the 5′-flanking region of the Pdx-1 gene [Sharma, Leonard, Lee, Chapman, Leiter and Montminy (1996) J. Biol. Chem. 271, 2294-2299]. In the present study, we show that USF not only binds to the Pdx-1 gene promoter but also functionally regulates the expression of the Pdx-1 gene in differentiated pancreatic β-cells. Adenovirus-mediated overexpression of a dominant negative form of USF2 decreased binding of endogenous USF to the E-box element by ~ 90%. This reduction in endogenous USF binding led to a greater than 50% decrease in Pdx-1 gene promoter activity, which, in turn, resulted in marked reductions in Pdx-1 mRNA and protein levels. Importantly, the lower Pdx-1 protein levels led to a greater than 50% reduction in Pdx-1 binding activity to the A3 element on the insulin gene promoter, and a significant reduction in insulin mRNA levels. Overall, our results show that USF functionally regulates Pdx-1 gene expression in differentiated pancreatic β-cells and provide the first functional data for a role of USF in the regulation of a normal cellular gene.


Sign in / Sign up

Export Citation Format

Share Document