scholarly journals Expression and characterization of novel thrombospondin 1 type I repeat fusion proteins

2000 ◽  
Vol 346 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Aziz N. QABAR ◽  
Jeff BULLOCK ◽  
Louis MATEJ ◽  
Peter POLVERINI

Thrombospondin (TSP)1 is a trimeric extracellular matrix protein that is held together by two cysteine residues. It is one of five TSP proteins that have been described to date with almost a universal heparin binding capability (TSP5 being the exception). The existence of two conformationally distinct structures in the TSP family (trimers and pentamers) prompted us to investigate the contribution of TSP1 trimeric structure to its inhibitory role in angiogenesis. We expressed full-length recombinant human TSP1, its type I repeats, and murine TSP3 in a human embryonic kidney cell line and evaluated their effect on human dermal microvascular endothelial cell (HMVEC) proliferation and sprouting into tube-like structures in vitro. Additionally, two chimaeric molecules were constructed so that the type I repeats of TSP1 were expressed as either dimers (TSP1-Ig chimaera) or pentamers (TSP1-TSP3 chimaera). Dimeric and pentameric type I constructs are novel structures. We found that, similarly to full-length TSP1, intact trimeric type I repeats were inhibitory to HMVEC angiogenesis in vitro. However, dimeric and pentameric type I repeats of TSP1 only partially inhibited HMVEC proliferation and sprouting in vitro. TSP3, which is lacking type I repeats, had no inhibitory activity, confirming that type I repeats elicit the anti-angiogenic activity of TSP1.

2009 ◽  
Vol 423 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Sebastian Kalamajski ◽  
Anders Aspberg ◽  
Karin Lindblom ◽  
Dick Heinegård ◽  
Åke Oldberg

The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10–12 and by full-length decorin, but not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin fragment LRR 10–12 inhibited the pro-osteoblastic activity of full-length asporin. Our results suggest that asporin and decorin compete for binding to collagen and that the polyaspartate in asporin directly regulates collagen mineralization. Therefore asporin has a role in osteoblast-driven collagen biomineralization activity. We also show that asporin can be expressed in Escherichia coli (Rosetta-gami™) with correctly positioned cysteine bridges, and a similar system can possibly be used for the expression of other SLRPs (small LRR proteoglycans/proteins).


Blood ◽  
2009 ◽  
Vol 114 (25) ◽  
pp. 5206-5215 ◽  
Author(s):  
Ha-Jeong Kim ◽  
Pan-Kyung Kim ◽  
Sang Mun Bae ◽  
Hye-Nam Son ◽  
Debraj Singh Thoudam ◽  
...  

Abstract Transforming growth factor-β–induced protein (TGFBIp)/βig-h3 is a 68-kDa extracellular matrix protein that is functionally associated with the adhesion, migration, proliferation, and differentiation of various cells. The presence of TGFBIp in platelets led us to study the role of this protein in the regulation of platelet functions. Upon activation, platelet TGFBIp was released and associated with the platelets. TGFBIp mediates not only the adhesion and spread of platelets but also activates them, resulting in phosphatidylserine exposure, α-granule secretion, and increased integrin affinity. The fasciclin 1 domains of TGFBIp are mainly responsible for the activation of platelets. TGFBIp promotes thrombus formation on type I fibrillar collagen under flow conditions in vitro and induces pulmonary embolism in mice. Moreover, transgenic mice, which have approximately a 1.7-fold greater blood TGFBIp concentration, are significantly more susceptible to collagen- and epinephrine-induced pulmonary embolism than wild-type mice. These results suggest that TGFBIp, a human platelet protein, plays important roles in platelet activation and thrombus formation. Our findings will increase our understanding of the novel mechanism of platelet activation, contributing to a better understanding of thrombotic pathways and the development of new antithrombotic therapies.


2012 ◽  
Vol 287 (15) ◽  
pp. 12204-12216 ◽  
Author(s):  
Sonia Carulli ◽  
Konrad Beck ◽  
Guila Dayan ◽  
Sophie Boulesteix ◽  
Hugues Lortat-Jacob ◽  
...  

Keratinocyte migration during epidermal repair depends on interactions between cellular heparan sulfate proteoglycan receptors, syndecan-1 and -4, and the C-terminal globular domains (LG45) of the extracellular matrix protein laminin 332. This study investigates the molecular basis of the binding specificity of the syndecan-1 and -4 receptors expressed by human keratinocytes. We used site-directed mutagenesis to alter a recombinant LG45 protein by substituting the most critical basic residues with glutamine. All proteins were expressed in mammalian cells, purified, and characterized biochemically. We used in vitro binding assays, including surface plasmon resonance, to examine interactions between mutated LG45 and heparan sulfates, syndecan-1 and -4. We identify a major heparin binding domain on the outer edge of a β-strand of LG45 surrounded by a track of converging low affinity residues. This domain harbors distinctive syndecan-1 and -4 binding-specific sequences. This is the first study to demonstrate a binding specificity of two proteoglycans produced by a single cell type. In addition, we found that although syndecan-1 interacts exclusively through its glycosaminoglycan chains, syndecan-4 binding relies on both its core protein and its heparan sulfate chains. These results suggest that LG45 may trigger different signals toward keratinocytes depending on its interaction with syndecan-1 or -4.


2021 ◽  
Vol 13 (582) ◽  
pp. eabe5738
Author(s):  
Tao Wang ◽  
Andrea Wagner ◽  
Renate Gehwolf ◽  
Wenjin Yan ◽  
Fabian S. Passini ◽  
...  

Tendons and tendon interfaces have a very limited regenerative capacity, rendering their injuries clinically challenging to resolve. Tendons sense muscle-mediated load; however, our knowledge on how loading affects tendon structure and functional adaption remains fragmentary. Here, we provide evidence that the matricellular protein secreted protein acidic and rich in cysteine (SPARC) is critically involved in the mechanobiology of tendons and is required for tissue maturation, homeostasis, and enthesis development. We show that tendon loading at the early postnatal stage leads to tissue hypotrophy and impaired maturation of Achilles tendon enthesis in Sparc−/− mice. Treadmill training revealed a higher prevalence of spontaneous tendon ruptures and a net catabolic adaptation in Sparc−/− mice. Tendon hypoplasia was attenuated in Sparc−/− mice in response to muscle unloading with botulinum toxin A. In vitro culture of Sparc−/− three-dimensional tendon constructs showed load-dependent impairment of ribosomal S6 kinase activation, resulting in reduced type I collagen synthesis. Further, functional calcium imaging revealed that lower stresses were required to trigger mechanically induced responses in Sparc−/− tendon fascicles. To underscore the clinical relevance of the findings, we further demonstrate that a missense mutation (p.Cys130Gln) in the follistatin-like domain of SPARC, which causes impaired protein secretion and type I collagen fibrillogenesis, is associated with tendon and ligament injuries in patients. Together, our results demonstrate that SPARC is a key extracellular matrix protein essential for load-induced tendon tissue maturation and homeostasis.


1997 ◽  
Vol 16 (5) ◽  
pp. 289-292 ◽  
Author(s):  
Maureen R. Johnson ◽  
Douglas J. Wilkin ◽  
Hans L. Vos ◽  
Rosa Isela Ortiz De Luna ◽  
Anindya M. Dehejia ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972098614
Author(s):  
Peng Xia ◽  
Xinwei Wang ◽  
Qi Wang ◽  
Xiaoju Wang ◽  
Qiang Lin ◽  
...  

Mesenchymal stem cell (MSC) migration is promoted by low-intensity pulsed ultrasound (LIPUS), but its mechanism is unclear. Since autophagy is known to regulate cell migration, our study aimed to investigate if LIPUS promotes the migration of MSCs via autophagy regulation. We also aimed to investigate the effects of intra-articular injection of MSCs following LIPUS stimulation on osteoarthritis (OA) cartilage. For the in vitro study, rat bone marrow-derived MSCs were treated with an autophagy inhibitor or agonist, and then they were stimulated by LIPUS. Migration of MSCs was detected by transwell migration assays, and stromal cell-derived factor-1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR4) protein levels were quantified. For the in vivo study, a rat knee OA model was generated and treated with LIPUS after an intra-articular injection of MSCs with autophagy inhibitor added. The cartilage repair was assessed by histopathological analysis and extracellular matrix protein expression. The in vitro results suggest that LIPUS increased the expression of SDF-1 and CXCR4, and it promoted MSC migration. These effects were inhibited and enhanced by autophagy inhibitor and agonist, respectively. The in vivo results demonstrate that LIPUS significantly enhanced the cartilage repair effects of MSCs on OA, but these effects were blocked by autophagy inhibitor. Our results suggest that the migration of MSCs was enhanced by LIPUS through the activation autophagy, and LIPUS improved the protective effect of MSCs on OA cartilage via autophagy regulation.


1996 ◽  
Vol 109 (8) ◽  
pp. 2161-2168 ◽  
Author(s):  
A. Giese ◽  
M.A. Loo ◽  
S.A. Norman ◽  
S. Treasurywala ◽  
M.E. Berens

Tenascin, an extracellular matrix protein, is expressed in human gliomas in vitro and in vivo. The distribution of tenascin at the invasive edge of these tumors, even surrounding solitary invading cells, suggests a role for this protein as a regulator of glioma cell migration. We tested whether purified tenascin, passively deposited on surfaces, influenced the adhesion or migration of a human gliomaderived cell line, SF-767. Adhesion of glioma cells to tenascin increased in a dose-dependent fashion up to a coating concentration of 10 micrograms/ml. Higher coating concentrations resulted in progressively fewer cells attaching. Cell adhesion could be blocked to basal levels using anti-beta 1 integrin antibodies. In contrast, when anti-alpha v antibodies were added to the medium of cells on tenascin, cell adhesion was enhanced slightly. Using a microliter scale migration assay, we found that cell motility on tenascin was dose dependently stimulated at coating concentrations of 1 and 3 micrograms/ml, but migration was inhibited below levels of non-specific motility when tested at coating concentrations of 30 and 100 micrograms/ml. Migration on permissive concentrations of tenascin could be reversibly inhibited with anti-beta 1, while treatment with anti-alpha v antibodies increased migration rates. We conclude that SF-767 glioma cells express two separate integrin receptors that mediate contrasting adhesive and migratory responses to tenascin.


1992 ◽  
Vol 12 (11) ◽  
pp. 5131-5144
Author(s):  
H Wang ◽  
J C Kennell ◽  
M T Kuiper ◽  
J R Sabourin ◽  
R Saldanha ◽  
...  

The Mauriceville and Varkud plasmids are retroid elements that propagate in the mitochondria of some Neurospora spp. strains. Previous studies of endogenous reactions in ribonucleoprotein particle preparations suggested that the plasmids use a novel mechanism of reverse transcription that involves synthesis of a full-length minus-strand DNA beginning at the 3' end of the plasmid transcript, which has a 3' tRNA-like structure (M. T. R. Kuiper and A. M. Lambowitz, Cell 55:693-704, 1988). In this study, we developed procedures for releasing the Mauriceville plasmid reverse transcriptase from mitochondrial ribonucleoprotein particles and partially purifying it by heparin-Sepharose chromatography. By using these soluble preparations, we show directly that the Mauriceville plasmid reverse transcriptase synthesizes full-length cDNA copies of in vitro transcripts beginning at the 3' end and has a preference for transcripts having the 3' tRNA-like structure. Further, unlike retroviral reverse transcriptases, the Mauriceville plasmid reverse transcriptase begins cDNA synthesis directly opposite the 3'-terminal nucleotide of the template RNA. The ability to initiate cDNA synthesis directly at the 3' end of template RNAs may also be relevant to the mechanisms of reverse transcription used by LINEs, group II introns, and other non-long terminal repeat retroid elements.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Renee W. Y. Chan ◽  
Leo L. M. Poon

ABSTRACT A novel betacoronavirus, human coronavirus (HCoV-EMC), has recently been detected in humans with severe respiratory disease. Further characterization of HCoV-EMC suggests that this virus is different from severe acute respiratory syndrome coronavirus (SARS-CoV) because it is able to replicate in multiple mammalian cell lines and it does not use angiotensin-converting enzyme 2 as a receptor to achieve infection. Additional research is urgently needed to better understand the pathogenicity and tissue tropism of this virus in humans. In their recent study published in mBio, Kindler et al. shed some light on these important topics (E. Kindler, H. R. Jónsdóttir, M. Muth, O. J. Hamming, R. Hartmann, R. Rodriguez, R. Geffers, R. A. Fouchier, C. Drosten, M. A. Müller, R. Dijkman, and V. Thiel, mBio 4[1]:e00611-12, 2013). These authors report the use of differentiated pseudostratified human primary airway epithelial cells, an in vitro model with high physiological relevance to the human airway epithelium, to characterize the cellular tropism of HCoV-EMC. More importantly, the authors demonstrate the potential use of type I and type III interferons (IFNs) to control viral infection.


Sign in / Sign up

Export Citation Format

Share Document