Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway

2001 ◽  
Vol 353 (2) ◽  
pp. 267-273 ◽  
Author(s):  
Elisabet DE LOS PINOS ◽  
Silvia FERNÁNDEZ DE MATTOS ◽  
Manel JOAQUIN ◽  
Albert TAULER

The hepatic isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PF2K/Fru-2,6-BPase) is transcriptionally stimulated by glucocorticoids, whereas insulin blocks this stimulatory effect. Although this inhibitory effect has been extensively reported, nothing is known about the signalling pathway responsible. We have used well-characterized inhibitors for proteins involved in different signalling cascades to assess the involvement of these pathways on the transcriptional regulation of glucocorticoid-stimulated PF2K/Fru-2,6-BPase by insulin. Our results demonstrate that the phosphoinositide 3-kinase, p70/p85 ribosomal S6 kinase, extracellular signal-regulated protein kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinase pathways are not involved in the inhibitory effect of insulin on glucocorticoid-stimulated PF2K/Fru-2,6-BPase. To evaluate the implication of the MAP kinase/ERK kinase (MEK)-4Őstress-activated protein kinaseŐc-Jun-N-terminal protein kinase (‘JNKŐSAPK’) pathway we overexpressed the N-terminal JNK-binding domain of the JNK-interacting protein 1 (‘JIP-1’), demonstrating that activation of JNK is necessary for the insulin inhibitory effect. Moreover, overexpression of MEK kinase 1 and JNKŐhaemagglutinin resulted in the inhibition of the glucocorticoid-stimulated PF2K/Fru-2,6-BPase. These results provide clear and specific evidence for the role of JNK in the insulin inhibition of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. In addition, we performed experiments with a mutant of the glucocorticoid receptor in which the JNK phosphorylation target Ser-246 had been mutated to Ala. Our results demonstrate that the phosphorylation of the glucocorticoid receptor on Ser-246 is not responsible for the JNK repression of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression.

1998 ◽  
Vol 18 (4) ◽  
pp. 1946-1955 ◽  
Author(s):  
Jun Xing ◽  
Jon M. Kornhauser ◽  
Zhengui Xia ◽  
Elizabeth A. Thiele ◽  
Michael E. Greenberg

ABSTRACT The mechanisms by which growth factor-induced signals are propagated to the nucleus, leading to the activation of the transcription factor CREB, have been characterized. Nerve growth factor (NGF) was found to activate multiple signaling pathways that mediate the phosphorylation of CREB at the critical regulatory site, serine 133 (Ser-133). NGF activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs), which in turn activate the pp90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases, all three members of which were found to catalyze CREB Ser-133 phosphorylation in vitro and in vivo. In addition to the ERK/RSK pathway, we found that NGF activated the p38 MAPK and its downstream effector, MAPK-activated protein kinase 2 (MAPKAP kinase 2), resulting in phosphorylation of CREB at Ser-133. Inhibition of either the ERK/RSK or the p38/MAPKAP kinase 2 pathway only partially blocked NGF-induced CREB Ser-133 phosphorylation, suggesting that either pathway alone is sufficient for coupling the NGF signal to CREB activation. However, inhibition of both the ERK/RSK and the p38/MAPKAP kinase 2 pathways completely abolished NGF-induced CREB Ser-133 phosphorylation. These findings indicate that NGF activates two distinct MAPK pathways, both of which contribute to the phosphorylation of the transcription factor CREB and the activation of immediate-early genes.


2001 ◽  
Vol 359 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Sunke HIMPEL ◽  
Pascal PANZER ◽  
Klaus EIRMBTER ◽  
Hanna CZAJKOWSKA ◽  
Muhammed SAYED ◽  
...  

Protein kinases of the DYRK (‘dual-specificity tyrosine-regulated kinase’) family are characterized by a conserved Tyr-Xaa-Tyr motif (Tyr-319–Tyr-321) in a position exactly corresponding to the activation motif of the mitogen-activated protein kinase (MAP kinase) family (Thr-Xaa-Tyr). In a molecular model of the catalytic domain of DYRK1A, the orientation of phosphorylated Tyr-321 is strikingly similar to that of Tyr-185 in the known structure of the activated MAP kinase, extracellular-signal-regulated kinase 2. Consistent with our model, substitution of Tyr-321 but not of Tyr-319 by phenylalanine markedly reduced the enzymic activity of recombinant DYRK1A expressed in either Escherichia coli or mammalian cells. Direct identification of phosphorylated residues by tandem MS confirmed that Tyr-321, but not Tyr-319, was phosphorylated. When expressed in COS-7 cells, DYRK1A was found to be fully phosphorylated on Tyr-321. A catalytically inactive mutant of DYRK1A contained no detectable phosphotyrosine, indicating that Tyr-321 is autophosphorylated by DYRK1A. MS identified Tyr-111 and Ser-97 as additional autophosphorylation sites in the non-catalytic N-terminal domain of bacterially expressed DYRK1A. Enzymic activity was not affected in the DYRK1A-Y111F mutant. The present experimental data and the molecular model indicate that the activity of DYRK1A is dependent on the autophosphorylation of a conserved tyrosine residue in the activation loop.


Blood ◽  
2003 ◽  
Vol 102 (5) ◽  
pp. 1771-1778 ◽  
Author(s):  
Sheila M. Barry ◽  
Dimitrios G. Zisoulis ◽  
Joel W. Neal ◽  
Neil A. Clipstone ◽  
Geoffrey S. Kansas

AbstractInduction of the α1,3-fucosyltransferase FucT-VII in T lymphocytes is crucial for selectin ligand formation, but the signaling and transcriptional pathways that govern FucT-VII expression are unknown. Here, using a novel, highly phorbol myristate acetate (PMA)–responsive variant of the Jurkat T-cell line, we identify Ras and downstream mitogen-activated protein (MAP) kinase pathways as essential mediators of FucT-VII gene expression. PMA induced FucT-VII in only a subset of treated cells, similar to expression of FucT-VII in normal activated CD4 T cells. Introduction of constitutively active Ras or Raf by recombinant retroviruses induced FucT-VII expression only in that subset of cells expressing the highest levels of Ras, suggesting that induction of FucT-VII required a critical threshhold of Ras signaling. Both PMA treatment and introduction of active Ras led to rolling on E-selectin. Pharmacologic inhibition studies confirmed the involvement of the classic Ras-Raf-MEK–extracellular signal-regulated kinase (Ras-Raf-MEK-ERK) pathway in FucT-VII induction by PMA, Ras, and Raf. These studies also revealed a second, Ras-induced, Raf-1–independent pathway that participated in induction of FucT-VII. Strong activation of Ras represents a major pathway for induction of FucT-VII gene expression in T cells.


2005 ◽  
Vol 25 (9) ◽  
pp. 3670-3681 ◽  
Author(s):  
Deborah Brancho ◽  
Juan-Jose Ventura ◽  
Anja Jaeschke ◽  
Beth Doran ◽  
Richard A. Flavell ◽  
...  

ABSTRACT Mixed-lineage protein kinase 3 (MLK3) is a member of the mitogen-activated protein (MAP) kinase kinase kinase group that has been implicated in multiple signaling cascades, including the NF-κB pathway and the extracellular signal-regulated kinase, c-Jun NH2-terminal kinase (JNK), and p38 MAP kinase pathways. Here, we examined the effect of targeted disruption of the murine Mlk3 gene. Mlk3 −/− mice were found to be viable and healthy. Primary embryonic fibroblasts prepared from these mice exhibited no major signaling defects. However, we did find that MLK3 deficiency caused a selective reduction in tumor necrosis factor (TNF)-stimulated JNK activation. Together, these data demonstrate that MLK3 contributes to the TNF signaling pathway that activates JNK.


2001 ◽  
Vol 357 (3) ◽  
pp. 867-873 ◽  
Author(s):  
Dieter SCHMOLL ◽  
Rolf GREMPLER ◽  
Andreas BARTHEL ◽  
Hans-Georg JOOST ◽  
Reinhard WALTHER

Glucose-6-phosphatase (G6Pase) plays a central role in blood glucose homoeostasis, and insulin suppresses G6Pase gene expression by the activation of phosphoinositide 3-kinase (PI 3-kinase). Here, we show that the phorbol ester PMA decreases both basal and dexamethasone/cAMP-induced expression of a luciferase gene under the control of the G6Pase promoter in transiently transfected H4IIE hepatoma cells. This regulation was suppressed by the inhibitors of the mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase (MEK), PD98059 and U0126, but not by the inhibitor of PI 3-kinase, LY294002. The co-expression of a constitutively active mutant of MEK mimicked the regulation of G6Pase promoter activity by PMA. The effect of PMA on both basal and induced G6Pase gene transcription was impaired by the overexpression of a dominant negative MEK construct, as well as by the expression of mitogen-activated protein kinase phosphatase-1. The mutation of the forkhead-binding sites within the insulin-response unit of the G6Pase promoter, which decreases the effect of insulin on G6Pase gene expression, did not alter the regulation of gene expression by PMA. The data show that PMA decreases G6Pase gene expression by the activation of MEK and extracellular-signal regulated protein kinase. With that, PMA mimics the effect of insulin on G6Pase gene expression by a different signalling pathway.


2005 ◽  
Vol 25 (3) ◽  
pp. 907-920 ◽  
Author(s):  
Teddy T. C. Yang ◽  
Qiufang Xiong ◽  
Isabella A. Graef ◽  
Gerald R. Crabtree ◽  
Chi-Wing Chow

ABSTRACT Integration of protein kinases into transcription activation complexes influences the magnitude of gene expression. The nuclear factor of activated T cells (NFAT) group of proteins are critical transcription factors that direct gene expression in immune and nonimmune cells. A balance of phosphotransferase activity is necessary for optimal NFAT activation. Activation of NFAT requires dephosphorylation by the calcium-mediated calcineurin phosphatase to promote NFAT nuclear accumulation, and the Ras-activated extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase, which targets NFAT partners, to potentiate transcription. Whether protein kinases operate on NFAT and contribute positively to transcription activation is not clear. Here, we coupled DNA affinity isolation with in-gel kinase assays to avidly pull down the activated NFAT and identify its associated protein kinases. We demonstrate that p90 ribosomal S6 kinase (RSK) is recruited to the NFAT-DNA transcription complex upon activation. The formation of RSK-NFATc4-DNA transcription complex is also apparent upon adipogenesis. Bound RSK phosphorylates Ser676 and potentiates NFATc4 DNA binding by escalating NFAT-DNA association. Ser676 is also targeted by the ERK MAP kinase, which interacts with NFAT at a distinct region than RSK. Thus, integration of the ERK/RSK signaling pathway provides a mechanism to modulate NFATc4 transcription activity.


1998 ◽  
Vol 188 (7) ◽  
pp. 1287-1295 ◽  
Author(s):  
Ari Hashimoto ◽  
Hidetaka Okada ◽  
Aimin Jiang ◽  
Mari Kurosaki ◽  
Steven Greenberg ◽  
...  

Mitogen-activated protein (MAP) kinase family members, including extracellular signal–regulated kinase (ERK), c-Jun NH2-terminal kinase (  JNK), and p38 MAP kinase, have been implicated in coupling the B cell antigen receptor (BCR) to transcriptional responses. However, the mechanisms that lead to the activation of these MAP kinase family members have been poorly elucidated. Here we demonstrate that the BCR-induced ERK activation is reduced by loss of Grb2 or expression of a dominant-negative form of Ras, RasN17, whereas this response is not affected by loss of Shc. The inhibition of the ERK response was also observed in phospholipase C (PLC)-γ2–deficient DT40 B cells, and expression of RasN17 in the PLC-γ2–deficient cells completely abrogated the ERK activation. The PLC-γ2 dependency of ERK activation was most likely due to protein kinase C (PKC) activation rather than calcium mobilization, since loss of inositol 1,4,5-trisphosphate receptors did not affect ERK activation. Similar to cooperation of Ras with PKC activation in ERK response, both PLC-γ2–dependent signal and GTPase are required for BCR-induced JNK and p38 responses. JNK response is dependent on Rac1 and calcium mobilization, whereas p38 response requires Rac1 and PKC activation.


1993 ◽  
Vol 90 (23) ◽  
pp. 10952-10956 ◽  
Author(s):  
R H Chen ◽  
C Abate ◽  
J Blenis

Phosphorylation of the C terminus of c-Fos has been implicated in serum response element-mediated repression of c-fos transcription after its induction by serum growth factors. The growth-regulated enzymes responsible for this phosphorylation in early G1 phase of the cell cycle and the sites of phosphorylation have not been identified. We now provide evidence that two growth-regulated, nucleus- and cytoplasm-localized protein kinases, 90-kDa ribosomal S6 kinase (RSK) and mitogen-activated protein kinase (MAP kinase), contribute to the serum-induced phosphorylation of c-Fos. The major phosphopeptides derived from biosynthetically labeled c-Fos correspond to phosphopeptides generated after phosphorylation of c-Fos in vitro with both RSK and MAP kinase. The phosphorylation sites identified for RSK (Ser-362) and MAP kinase (Ser-374) are in the transrepression domain. Cooperative phosphorylation at these sites by both enzymes was observed in vitro and reflected in vivo by the predominance of the peptide phosphorylated on both sites, as opposed to singly phosphorylated peptides. This study suggests a role for nuclear RSK and MAP kinase in modulating newly synthesized c-Fos phosphorylation and downstream signaling.


Sign in / Sign up

Export Citation Format

Share Document