Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin δ: interaction with actin, clathrin and tubulin

2002 ◽  
Vol 363 (3) ◽  
pp. 599-608 ◽  
Author(s):  
Lenka IVINGS ◽  
Stephen R. PENNINGTON ◽  
Roz JENKINS ◽  
Jamie L. WEISS ◽  
Robert D. BURGOYNE

The neuronal calcium sensors are a family of EF-hand-containing Ca2+-binding proteins expressed predominantly in retinal photoreceptors and neurons. One of the family members is neurocalcin δ, the function of which is unknown. As an approach to elucidating the protein interactions made by neurocalcin δ, we have identified brain cytosolic proteins that bind to neurocalcin δ in a Ca2+-dependent manner. We used immobilized recombinant myristoylated neurocalcin δ combined with protein identification using MS. We demonstrate a specific interaction with clathrin heavy chain, α- and β-tubulin, and actin. These interactions were dependent upon myristoylation of neurocalcin δ indicating that the N-terminal myristoyl group may be important for protein—protein interactions in addition to membrane association. Direct binding of neurocalcin δ to clathrin, tubulin and actin was confirmed using an overlay assay. These interactions were also demonstrated for endogenous neurocalcin δ by co-immunoprecipitation from rat brain cytosol. When expressed in HeLa cells, neurocalcin δ was cytosolic at resting Ca2+ levels but translocated to membranes, including a perinuclear compartment (trans-Golgi network) where it co-localized with clathrin, following Ca2+ elevation. These data suggest the possibility that neurocalcin δ functions in the control of clathrin-coated vesicle traffic.

2000 ◽  
Vol 74 (6) ◽  
pp. 2510-2524 ◽  
Author(s):  
Heike Hofmann ◽  
Stefan Flöss ◽  
Thomas Stamminger

ABSTRACT The 86-kDa IE2 protein (IE2-p86) of human cytomegalovirus (HCMV) is a potent transactivator of viral as well as cellular promoters. Several lines of evidence indicate that this broad transactivation spectrum is mediated by protein-protein interactions. To identify novel cellular binding partners, we performed a yeast two-hybrid screen using a N-terminal deletion mutant of IE2-p86 comprising amino acids 135 to 579 as a bait. Here, we report the isolation of two ubiquitin-homologous proteins, SUMO-1 and hSMT3b, as well as their conjugating activity hUBC9 (human ubiquitin-conjugating enzyme 9) as specific interaction partners of HCMV IE2. The polypeptides SUMO-1 and hSMT3b have previously been shown to be covalently coupled to a subset of nuclear proteins such as the nuclear domain 10 (ND10) proteins PML and Sp100 in a manner analogous to ubiquitinylation, which we call SUMOylation. By Western blot analysis, we were able to show that the IE2-p86 protein can be partially converted to a 105-kDa isoform in a dose-dependent manner after cotransfection of an epitope-tagged SUMO-1. Immunoprecipitation experiments of the conjugated isoforms using denaturing conditions further confirmed the covalent coupling of SUMO-1 or hSMT3b to IE2-p86 both after transient transfection and after lytic infection of human primary fibroblasts. Moreover, we defined two modification sites within IE2, located in an immediate vicinity at amino acid positions 175 and 180, which appear to be used alternatively for coupling. By using a SUMOylation-defective mutant, we showed that the targeting of IE2-p86 to ND10 occurs independent of this modification. However, a strong reduction of IE2-mediated transactivation of two viral early promoters and a heterologous promoter was observed in cotransfection analysis with the SUMOylation-defective mutant. This suggests a functional relevance of covalent modification by ubiquitin-homologous proteins for IE2-mediated transactivation, possibly by providing an additional interaction motif for cellular cofactors.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 510
Author(s):  
Maho Yamamoto ◽  
Rina Kondo ◽  
Haruka Hozumi ◽  
Seita Doi ◽  
Miwako Denda ◽  
...  

During screening of protein-protein interactions, using human protein arrays carrying 19,676 recombinant glutathione s-transferase (GST)-fused human proteins, we identified the high-mobility protein group 20A (HMG20A) as a novel S100A6 binding partner. We confirmed the Ca2+-dependent interaction of HMG20A with S100A6 by the protein array method, biotinylated S100A6 overlay, and GST-pulldown assay in vitro and in transfected COS-7 cells. Co-immunoprecipitation of S100A6 with HMG20A from HeLa cells in a Ca2+-dependent manner revealed the physiological relevance of the S100A6/HMG20A interaction. In addition, HMG20A has the ability to interact with S100A1, S100A2, and S100B in a Ca2+-dependent manner, but not with S100A4, A11, A12, and calmodulin. S100A6 binding experiments using various HMG20A mutants revealed that Ca2+/S100A6 interacts with the C-terminal region (residues 311–342) of HMG20A with stoichiometric binding (HMG20A:S100A6 dimer = 1:1). This was confirmed by the fact that a GST-HMG20A mutant lacking the S100A6 binding region (residues 311–347, HMG20A-ΔC) failed to interact with endogenous S100A6 in transfected COS-7 cells, unlike wild-type HMG20A. Taken together, these results identify, for the first time, HMG20A as a target of Ca2+/S100 proteins, and may suggest a novel linkage between Ca2+/S100 protein signaling and HMG20A function, including in the regulation of neural differentiation.


1993 ◽  
Vol 13 (1) ◽  
pp. 399-407
Author(s):  
I J McEwan ◽  
A P Wright ◽  
K Dahlman-Wright ◽  
J Carlstedt-Duke ◽  
J A Gustafsson

We have used a yeast (Saccharomyces cerevisiae) cell free transcription system to study protein-protein interactions involving the tau 1 transactivation domain of the human glucocorticoid receptor that are important for transcriptional transactivation by the receptor. Purified tau 1 specifically inhibited transcription from a basal promoter derived from the CYC1 gene and from the adenovirus 2 major late core promoter in a concentration-dependent manner. This inhibition or squelching was correlated with the transactivation activity of tau 1. Recombinant yeast TATA-binding protein (yTFIID), although active in vitro, did not specifically reverse the inhibitory effect of tau 1. In addition, no specific interaction between tau 1 and yTFIID could be shown in vitro by affinity chromatography. Taken together, these results indicate that the tau 1 transactivation domain of the human glucocorticoid receptor interacts directly with the general transcriptional apparatus through some target protein(s) that is distinct from the TATA-binding factor. Furthermore, this assay can be used to identify interacting factors, since after phosphocellulose chromatography of a whole-cell yeast extract, a fraction that contained an activity which selectively counteracted the squelching effect of tau 1 was found.


2019 ◽  
Vol 21 (1) ◽  
pp. 125
Author(s):  
Francesca Troilo ◽  
Francesca Malagrinò ◽  
Lorenzo Visconti ◽  
Angelo Toto ◽  
Stefano Gianni

SH2 domains are protein domains that modulate protein–protein interactions through a specific interaction with sequences containing phosphorylated tyrosines. In this work, we analyze the folding pathway of the C-terminal SH2 domain of the p85 regulatory subunit of the protein PI3K, which presents a proline residue in a cis configuration in the loop between the βE and βF strands. By employing single and double jump folding and unfolding experiments, we demonstrate the presence of an on-pathway intermediate that transiently accumulates during (un)folding. By comparing the kinetics of folding of the wild-type protein to that of a site-directed variant of C-SH2 in which the proline was replaced with an alanine, we demonstrate that this intermediate is dictated by the peptidyl prolyl cis-trans isomerization. The results are discussed in the light of previous work on the effect of peptidyl prolyl cis-trans isomerization on folding events.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. e62-e73 ◽  
Author(s):  
Louisa Dowal ◽  
Wei Yang ◽  
Michael R. Freeman ◽  
Hanno Steen ◽  
Robert Flaumenhaft

Abstract Protein palmitoylation is a dynamic process that regulates membrane targeting of proteins and protein-protein interactions. We have previously demonstrated a critical role for protein palmitoylation in platelet activation and have identified palmitoylation machinery in platelets. Using a novel proteomic approach, Palmitoyl Protein Identification and Site Characterization, we have begun to characterize the human platelet palmitoylome. Palmitoylated proteins were enriched from membranes isolated from resting platelets using acyl-biotinyl exchange chemistry, followed by identification using liquid chromatography-tandem mass spectrometry. This global analysis identified > 1300 proteins, of which 215 met criteria for significance and represent the platelet palmitoylome. This collection includes 51 known palmitoylated proteins, 61 putative palmitoylated proteins identified in other palmitoylation-specific proteomic studies, and 103 new putative palmitoylated proteins. Of these candidates, we chose to validate the palmitoylation of triggering receptors expressed on myeloid cell (TREM)–like transcript-1 (TLT-1) as its expression is restricted to platelets and megakaryocytes. We determined that TLT-1 is a palmitoylated protein using metabolic labeling with [3H]palmitate and identified the site of TLT-1 palmitoylation as cysteine 196. The discovery of new platelet palmitoyl protein candidates will provide a resource for subsequent investigations to validate the palmitoylation of these proteins and to determine the role palmitoylation plays in their function.


Open Biology ◽  
2013 ◽  
Vol 3 (10) ◽  
pp. 120173 ◽  
Author(s):  
Ingrid Kassner ◽  
Anneli Andersson ◽  
Monika Fey ◽  
Martin Tomas ◽  
Elisa Ferrando-May ◽  
...  

ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein–protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as a new SET7/9 target protein that is methylated at K508 in vitro and in vivo . ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-poly-ADP-ribosylation is not impaired by prior methylation of ARTD1. Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon oxidative stress in vivo . Furthermore, laser irradiation-induced PAR formation and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent manner. Together, these results reveal a novel mechanism for the regulation of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon cellular stress.


2010 ◽  
Vol 286 (11) ◽  
pp. 9382-9392 ◽  
Author(s):  
Aslamuzzaman Kazi ◽  
Jiazhi Sun ◽  
Kenichiro Doi ◽  
Shen-Shu Sung ◽  
Yoshinori Takahashi ◽  
...  

2013 ◽  
Vol 66 (7) ◽  
pp. 721 ◽  
Author(s):  
Izabela Sokolowska ◽  
Armand G. Ngounou Wetie ◽  
Alisa G. Woods ◽  
Costel C. Darie

Characterisation of proteins and whole proteomes can provide a foundation to our understanding of physiological and pathological states and biological diseases or disorders. Constant development of more reliable and accurate mass spectrometry (MS) instruments and techniques has allowed for better identification and quantification of the thousands of proteins involved in basic physiological processes. Therefore, MS-based proteomics has been widely applied to the analysis of biological samples and has greatly contributed to our understanding of protein functions, interactions, and dynamics, advancing our knowledge of cellular processes as well as the physiology and pathology of the human body. This review will discuss current proteomic approaches for protein identification and characterisation, including post-translational modification (PTM) analysis and quantitative proteomics as well as investigation of protein–protein interactions (PPIs).


2010 ◽  
Vol 30 (10) ◽  
pp. 2376-2390 ◽  
Author(s):  
Eric Herbig ◽  
Linda Warfield ◽  
Lisa Fish ◽  
James Fishburn ◽  
Bruce A. Knutson ◽  
...  

ABSTRACT Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.


2016 ◽  
Author(s):  
Anne-Florence Bitbol ◽  
Robert S. Dwyer ◽  
Lucy J. Colwell ◽  
Ned S. Wingreen

Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners. Hence, the sequences of interacting partners are correlated. Here we exploit these correlations to accurately identify which proteins are specific interaction partners from sequence data alone. Our general approach, which employs a pairwise maximum entropy model to infer direct couplings between residues, has been successfully used to predict the three-dimensional structures of proteins from sequences. Building on this approach, we introduce an iterative algorithm to predict specific interaction partners from among the members of two protein families. We assess the algorithm's performance on histidine kinases and response regulators from bacterial two-component signaling systems. The algorithm proves successful without any a priori knowledge of interaction partners, yielding a striking 0.93 true positive fraction on our complete dataset, and we uncover the origin of this surprising success. Finally, we discuss how our method could be used to predict novel protein-protein interactions.


Sign in / Sign up

Export Citation Format

Share Document