scholarly journals Leukocyte telomere length is associated with iron overload in male adults with hereditary hemochromatosis

2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Maximilino Martín ◽  
Andrea Millan ◽  
Florencia Ferraro ◽  
Walter F. Tetzlaff ◽  
Ezequiel Lozano Chiappe ◽  
...  

Abstract Background: Hereditary hemochromatosis (HH) is a primary iron overload (IO) condition. Absolute telomere length (ATL) is a marker of cellular aging and DNA damage associated with chronic diseases and mortality. Aim: To evaluate the relationship between ATL and IO in patients with HH. Methods: Cross-sectional study including 25 patients with HH: 8 with IO and 17 without IO (ferritin < 300 ng/ml) and 25 healthy controls. Inclusion criteria were: age > 18 years, male sex and HH diagnosis. Patients with diabetes or other endocrine and autoimmune diseases were excluded. ATL was measured by real-time PCR. Results: HH patients with IO were older (P<0.001) and showed higher ferritin concentration (P<0.001). Patients with HH, disregarding the iron status, showed higher glucose and body mass index (BMI) than controls (both P<0.01). ATL was shorter in patients with IO than controls [with IO: 8 (6–14), without IO: 13 (9–20), and controls: 19 (15–25) kilobase pairs, P<0.01]; with a linear trend within groups (P for trend <0.01). Differences in ATL remained statistically significant after adjusting by age, BMI and glucose (P<0.05). Discussion: Patients with IO featured shorter ATL while patients without IO showed only mild alterations vs. controls. Screening for IO is encouraged to prevent iron-associated cellular damage and early telomere attrition.

2020 ◽  
Author(s):  
Nithita Nanthatanti ◽  
Adisak Tantiworawit ◽  
Pokpong Piriyakhuntorn ◽  
Thanawat Rattanathammethee ◽  
Sasinee Hantrakool ◽  
...  

Abstract Background: Thalassemia is a hereditary hemolytic anemia with a severity ranging from mild, non-transfusion dependent to severe chronic anemia requiring lifelong transfusion. Transfusional iron overload is a major complication in patients with transfusion-dependent thalassemia (TDT). Telomeres are sequences of nucleotides forming the end caps of chromosomes that act as a DNA repair system. Iron overload in thalassemia can cause increased oxidative stress which leads to cellular damage and senescence. This may result in telomere length shortening. The degree of telomere length shortening may reflect the severity of thalassemia. Methods: This research aimed to study the leukocyte telomere length in patients with TDT in comparison to non-thalassemic individuals and to identify the clinical and laboratory parameters that are associated with telomere length. We conducted a cross-sectional study in patients with TDT aged ≥18 years. Leukocyte telomere length was measured by real-time quantitative PCR. Results: Sixty-five patients with TDT were enrolled onto the study. There were 37 female patients (54.4%). The median age was 27 (18-57) years, and mean pre-transfusion hemoglobin level was 7.1±1.07 g/dL. The mean telomere to single copy gene (T/S) ratios of patients with TDT and the controls were 0.72±0.18 and 0.99±0.25, respectively (p <0.0001). There was a significant correlation between the T/S ratio and age (p = 0.0002), and hemoglobin level (p = 0.044). There was no correlation between telomere length and other factors. Conclusions: Our study showed that TDT patients had shorter leukocyte telomere length compared with controls. Leukocyte telomere shortening in TDT was an aging-dependent process and associated with lower hemoglobin level.


2019 ◽  
Author(s):  
Nithita Nanthatanti ◽  
Adisak Tantiworawit ◽  
Pokpong Piriyakhuntorn ◽  
Thanawat Rattanathammethee ◽  
Sasinee Hantrakool ◽  
...  

Abstract Background: Thalassemia is a hereditary hemolytic anemia with a severity ranging from mild, non transfusion-dependent to severe chronic anemia requiring lifelong transfusion. Transfusional iron overload is a major complication in patients with transfusion-dependent thalassemia (TDT). Telomeres are sequences of nucleotides forming the end caps of chromosomes that act as a DNA repair system. Iron overload in thalassemia can cause increased oxidative stress which leads to cellular damage and senescence. This may result in telomere length shortening. The degree of telomere length shortening may reflect the severity of thalassemia. Methods: This research aimed to study the telomere length in patients with TDT in comparison to non-thalassemic individuals and to identify the clinical and laboratory parameters that are associated with telomere length. We conducted a cross-sectional study in patients with TDT aged ³18 years. Telomere length was measured by real-time quantitative PCR. Results: Sixty-five patients with TDT were enrolled onto the study. There were 37 female patients (54.4%). The median age was 27 (18-57) years, and mean pre-transfusion hemoglobin (Hb) was 7.1 (± 1.07) g/dL. The mean telomeric terminal restriction fragment length (TRFL) of patients with TDT and the controls was 6.11 (± 0.61) kb and 6.79 (± 0.84) kb, respectively (p <0.0001). There was a significant correlation between TRFL and age (p =0.0002), and Hb (p=0.044). There was no correlation of telomere length with other factors. Conclusions: Our study showed that TDT patients had shorter telomere length compared with controls. Telomere shortening in TDT was an aging-dependent process and associated with lower hemoglobin level.


2020 ◽  
Author(s):  
Nithita Nanthatanti ◽  
Adisak Tantiworawit ◽  
Pokpong Piriyakhuntorn ◽  
Thanawat Rattanathammethee ◽  
Sasinee Hantrakool ◽  
...  

Abstract Background: Thalassemia is a hereditary hemolytic anemia with a severity ranging from mild, non-transfusion dependent to severe chronic anemia requiring lifelong transfusion. Transfusional iron overload is a major complication in patients with transfusion-dependent thalassemia (TDT). Telomeres are sequences of nucleotides forming the end caps of chromosomes that act as a DNA repair system. Iron overload in thalassemia can cause increased oxidative stress which leads to cellular damage and senescence. This may result in telomere length shortening. The degree of telomere length shortening may reflect the severity of thalassemia. Methods: This research aimed to study the telomere length in patients with TDT in comparison to non-thalassemic individuals and to identify the clinical and laboratory parameters that are associated with telomere length. We conducted a cross-sectional study in patients with TDT aged ³18 years. Telomere length was measured by real-time quantitative PCR. Results: Sixty-five patients with TDT were enrolled onto the study. There were 37 female patients (54.4%). The median age was 27 (18-57) years, and mean pre-transfusion hemoglobin (Hb) was 7.1 (± 1.07) g/dL. The mean telomere terminal restriction fragment (TRF) length of patients with TDT and the controls was 6.11 (± 0.61) kb and 6.79 (± 0.84) kb, respectively (p <0.0001). There was a significant correlation between telomere TRF length and age (p =0.0002), and Hb (p=0.044). There was no correlation of telomere length with other factors. Conclusions: Our study showed that TDT patients had shorter telomere length compared with controls. Telomere shortening in TDT was an aging-dependent process and associated with lower hemoglobin level.


2020 ◽  
Author(s):  
Nithita Nanthatanti ◽  
Adisak Tantiworawit ◽  
Pokpong Piriyakhuntorn ◽  
Thanawat Rattanathammethee ◽  
Sasinee Hantrakool ◽  
...  

Abstract Background: Thalassemia is a hereditary hemolytic anemia with a severity ranging from mild, non-transfusion dependent to severe chronic anemia requiring lifelong transfusion. Transfusional iron overload is a major complication in patients with transfusion-dependent thalassemia (TDT). Telomeres are sequences of nucleotides forming the end caps of chromosomes that act as a DNA repair system. Iron overload in thalassemia can cause increased oxidative stress which leads to cellular damage and senescence. This may result in telomere length shortening. The degree of telomere length shortening may reflect the severity of thalassemia. Methods: This research aimed to study the leukocyte telomere length in patients with TDT in comparison to non-thalassemic individuals and to identify the clinical and laboratory parameters that are associated with telomere length. We conducted a cross-sectional study in patients with TDT aged ³18 years. Leukocyte telomere length was measured by real-time quantitative PCR. Results: Sixty-five patients with TDT were enrolled onto the study. There were 37 female patients (54.4%). The median age was 27 (18-57) years, and mean pre-transfusion hemoglobin level was 7.1 (± 1.07) g/dL. The mean telomere to single copy gene (T/S) ratios of patients with TDT and the controls were 0.72±0.18 and 0.99±0.25, respectively (p <0.0001). There was a significant correlation between the T/S ratio and age (p = 0.0002), and hemoglobin level (p = 0.044). There was no correlation between telomere length and other factors. Conclusions: Our study showed that TDT patients had shorter leukocyte telomere length compared with controls. Leukocyte telomere shortening in TDT was an aging-dependent process and associated with lower hemoglobin level.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
Tina Levstek ◽  
Sara Redenšek ◽  
Maja Trošt ◽  
Vita Dolžan ◽  
Katarina Trebušak Podkrajšek

Telomeres, which are repetitive sequences that cap the end of the chromosomes, shorten with each cell division. Besides cellular aging, there are several other factors that influence telomere length (TL), in particular, oxidative stress and inflammation, which play an important role in the pathogenesis of neurodegenerative brain diseases including Parkinson’s disease (PD). So far, the majority of studies have not demonstrated a significant difference in TL between PD patients and healthy individuals. However, studies investigating the effect of TL on the symptomatology and disease progression of PD are scarce, and thus, warranted. We analyzed TL of peripheral blood cells in a sample of 204 PD patients without concomitant autoimmune diseases and analyzed its association with several PD related phenotypes. Monochrome multiplex quantitative PCR (mmqPCR) was used to determine relative TL given as a ratio of the amount of DNA between the telomere and albumin as the housekeeping gene. We found a significant difference in the relative TL between PD patients with and without dementia, where shorter TL presented higher risk for dementia (p = 0.024). However, the correlation was not significant after adjustment for clinical factors (p = 0.509). We found no correlations between TLs and the dose of dopaminergic therapy when the analysis was adjusted for genetic variability in inflammatory or oxidative factors. In addition, TL influenced time to onset of motor complications after levodopa treatment initiation (p = 0.0134), but the association did not remain significant after adjustment for age at inclusion and disease duration (p = 0.0781). Based on the results of our study we conclude that TL contributes to certain PD-related phenotypes, although it may not have a major role in directing the course of the disease. Nevertheless, this expends currently limited knowledge regarding the association of the telomere attrition and the disease severity or motor complications in Parkinson’s disease.


2019 ◽  
Vol 97 (4) ◽  
pp. 328-334 ◽  
Author(s):  
Mirna N. Chahine ◽  
Simon Toupance ◽  
Sandy El-Hakim ◽  
Carlos Labat ◽  
Sylvie Gautier ◽  
...  

Short telomere length (TL) is associated with atherosclerotic cardiovascular disease (ACVD) and other age-related diseases. It is unclear whether these associations originate from having inherently short TL or a faster TL attrition before or during disease development. We proposed the blood-and-muscle model to assess TL dynamics throughout life course. Our objective was to measure TL in leukocytes (LTL) and in skeletal muscle (MTL), which served as a proxy of TL at birth. The delta (MTL–LTL) represented life-long telomere attrition. Blood draws and skeletal muscle biopsies were performed on 35 Lebanese individuals undergoing surgery. Following DNA extraction, LTL and MTL were measured by Southern blot. In every individual aged between 30 and 85 years, MTL was longer than LTL. With age, MTL and LTL decreased, but the delta (MTL–LTL) increased by 14 bp/year. We validated the blood-and-muscle model that allowed us to identify TL, TL at birth, and lifelong TL attrition in a cross-sectional study. This model can be used in larger cross-sectional studies to evaluate the association of telomere dynamics with age-related diseases onset and progression.


2020 ◽  
Vol 6 (1) ◽  
pp. e000804
Author(s):  
Kerttu Toivo ◽  
Pekka Kannus ◽  
Sami Kokko ◽  
Lauri Alanko ◽  
Olli J Heinonen ◽  
...  

ObjectivesTo compare laboratory test results and lung function of adolescent organised sports participants (SP) with non-participants (NP).MethodsIn this cross-sectional study, laboratory tests (haemoglobin, iron status), and flow-volume spirometry were performed on SP youths (199 boys, 203 girls) and their NP peers (62 boys, 114 girls) aged 14–17.ResultsHaemoglobin concentration <120/130 g/L was found in 5.8% of SP and 5.1% NP (OR 1.20, 95% CI 0.54 to 2.68). Ferritin concentration below 15 µg/L was found in 22.7% of both SP and NP girls. Among boys ferritin <30 µg/L was found in 26.5% of SP and 30.2% of NP (OR 0.76, 95% CI 0.40 to 1.47). Among SP iron supplement use was reported by 3.5% of girls and 1.5% of boys. In flow-volume spirometry with bronchodilation test, 7.0% of SP and 6.4% of NP had asthma-like findings (OR 1.17, 95% CI 0.54 to 2.54); those using asthma medication, that is, 9.8% of SP and 5.2% of NP were excluded from the analysis.ConclusionsScreening for iron deficiency is recommended for symptomatic persons and persons engaging in sports. Lung function testing is recommended for symptomatic persons and persons participating in sports in which asthma is more prevalent.


2019 ◽  
Vol 8 ◽  
Author(s):  
A. T. Mickle ◽  
D. R. Brenner ◽  
T. Beattie ◽  
T. Williamson ◽  
K. S. Courneya ◽  
...  

Abstract Telomeres are nucleoprotein complexes that form the ends of eukaryotic chromosomes where they protect DNA from genomic instability, prevent end-to-end fusion and limit cellular replicative capabilities. Increased telomere attrition rates, and relatively shorter telomere length, is associated with genomic instability and has been linked with several chronic diseases, malignancies and reduced longevity. Telomeric DNA is highly susceptible to oxidative damage and dietary habits may make an impact on telomere attrition rates through the mediation of oxidative stress and chronic inflammation. The aim of this study was to examine the association between leucocyte telomere length (LTL) with both the Dietary Inflammatory Index® 2014 (DII®) and the Alternative Healthy Eating Index 2010 (AHEI-2010). This is a cross-sectional analysis using baseline data from 263 postmenopausal women from the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial, in Calgary and Edmonton, Alberta, Canada. No statistically significant association was detected between LTL z-score and the AHEI-2010 (P = 0·20) or DII® (P = 0·91) in multivariable adjusted models. An exploratory analysis of AHEI-2010 and DII® parameters and LTL revealed anthocyanidin intake was associated with LTL (P < 0·01); however, this association was non-significant after a Bonferroni correction was applied (P = 0·27). No effect modification by age, smoking history, or recreational physical activity was detected for either relationship. Increased dietary antioxidant and decreased oxidant intake were not associated with LTL in this analysis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1859-1859
Author(s):  
Patricia Aguilar-Martinez ◽  
Severine Cunat ◽  
Fabienne Becker ◽  
Francois Blanc ◽  
Marlene Nourrit ◽  
...  

Abstract Introduction: Homozygozity for the p.Cys282Tyr (C282Y) mutation of the HFE gene is the main genotype associated with the common form of adult hereditary hemochromatosis. C282Y carriers do not usually develop iron overload, unless they have additional risk factors such as liver diseases, a dysmetabolic syndrome or an associated genetic defect. The commonest is the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele. However, a few rare HFE mutations can be found on the 6th chromosome in trans, some of which are of clinical interest to fully understand the disorder. Patients and Methods: We recently investigated four C282Y carrier patients with unusually high iron parameters, including increased levels of serum ferritin (SF), high transferrin saturation (TS) and high iron liver content measured by MRI. They were males, aged 37, 40, 42, 47 at diagnosis. Two brothers (aged 40 and 42) were referred separately. The HFE genotype, including the determination of the C282Y, H63D and S65C mutations was performed using PCR-RFLP. HFE sequencing was undertaken using the previously described SCA method (1). Sequencing of other genes (namely, HAMP, HJV/HFE2, SLC40A1, TFR2) was possibly performed in a last step using the same method. Results: We identified three rare HFE mutant alleles, two of which are undescribed, in the four studied patients. One patient bore a 13 nucleotide-deletion in exon 6 (c.[1022_1034del13], p.His341_Ala345&gt;LeufsX119), which is predicted to lead to an abnormal, elongated protein. The two brothers had a substitution of the last nucleotide of exon 2 (c.[340G&gt;A], p.Glu114Lys) that may modify the splicing of the 2d intron. The third patient, who bore an insertion of a A in exon 4 (c.[794dupA],p.[trp267LeufsX80]), has already been reported (1). Discussion: A vast majority of C282Y carriers will not develop iron overload and can be reassured. However, a careful step by step strategy at the clinical and genetic levels may allow to correctly identify those patients deserving further investigation. First, clinical examination and the assessment of iron parameters (SF and TS) allow identifying C282Y heterozygotes with an abnormal iron status. Once extrinsic factors such as heavy alcohol intake, virus or a dysmetabolic syndrome have been excluded, MRI is very useful to authenticate a high liver iron content. Second, HFE genotype must first exclude the presence of the H63D mutation. Compound heterozygozity for C282Y and H63D, a very widespread condition in our area, is usually associated with mild iron overload. Third, HFE sequencing can be undertaken and may identify new HFE variants as described here. The two novel mutations, a frameshift modifying the composition and the length of the C terminal end of the HFE protein and a substitution located at the last base of an exon, are likely to lead to an impaired function of HFE in association with the C282Y mutant. However, it is noteworthy that three of the four patients were diagnosed relatively late, after the 4th decade, as it is the case for C282Y homozygotes. Three further unrelated patients are currently under investigation in our laboratory for a similar clinical presentation. Finally, it can be noted that in those patients who will not have a HFE gene mutant identified, analysis of other genes implicated in iron overload must be performed to search for digenism or multigenism. None of our investigated patients had an additional gene abnormality.


Sign in / Sign up

Export Citation Format

Share Document