Mitochondrial dysfunction in sepsis

1999 ◽  
Vol 66 ◽  
pp. 149-166 ◽  
Author(s):  
Mervyn Singer ◽  
David Brealey

The current mainstream view of organ failure induced by sepsis revolves around inflammation and loss of vascular control. However, there has been a resurgence in interest in bioenergetic failure due to mitochondrial dysfunction. This concept is not new--studies date back 30 years; however, the data have been highly conflicting with findings of either decreased, increased or unchanged mitochondrial activity and/or nucleotide levels. These studies are virtually all based on non-human cells, isolated perfused organs or in vivo animal models that have received a variety of insults ranging from mild to severe, and monitored for different durations ranging from minutes to weeks. As a generalization, there does appear to be depression of mitochondrial function with longer-duration models of greater severity. This is confirmed by the scanty human data currently available. This chapter provides an overview, and attempts to relate the biochemical changes to the clinical condition. The potential roles of nitric oxide, intracellular calcium and reactive oxygen species are highlighted.

2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


2020 ◽  
Vol 16 (3) ◽  
pp. e1008379 ◽  
Author(s):  
Artur Santos-Miranda ◽  
Julliane Vasconcelos Joviano-Santos ◽  
Grazielle Alves Ribeiro ◽  
Ana Flávia M. Botelho ◽  
Peter Rocha ◽  
...  

Author(s):  
Luisa M. Sandalio ◽  
María Rodríguez‐Serrano ◽  
María C. Romero‐Puertas ◽  
Luis A. del Río

2020 ◽  
Vol 16 (10) ◽  
pp. e1009049
Author(s):  
Artur Santos-Miranda ◽  
Julliane Vasconcelos Joviano-Santos ◽  
Grazielle Alves Ribeiro ◽  
Ana Flávia M. Botelho ◽  
Peter Rocha ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Anthony Cyr ◽  
Lauran Chambers ◽  
Paul K. Waltz ◽  
Sean P. Whelan ◽  
Lauryn Kohut ◽  
...  

Background. Organ injury and dysfunction in sepsis accounts for significant morbidity and mortality. Adaptive cellular responses in the setting of sepsis prevent injury and allow for organ recovery. We and others have shown that part of the adaptive response includes regulation of cellular respiration and maintenance of a healthy mitochondrial population. Herein, we hypothesized that endotoxin-induced changes in hepatocyte mitochondrial respiration and homeostasis are regulated by an inducible nitric oxide synthase/nitric oxide (iNOS/NO)-mitochondrial reactive oxygen species (mtROS) signaling axis, involving activation of the NRF2 signaling pathway. Methods. Wild-type (C57Bl/6) or iNos-/- male mice were subjected to intraperitoneal lipopolysaccharide (LPS) injections to simulate endotoxemia. Individual mice were randomized to treatment with NO-releasing agent DPTA-NONOate, mtROS scavenger MitoTEMPO, or vehicle controls. Other mice were treated with scramble or Nrf2-specific siRNA via tail vein injection. Primary murine hepatocytes were utilized for in vitro studies with or without LPS stimulation. Oxygen consumption rates were measured to establish mitochondrial respiratory parameters. Western blotting, confocal microscopy with immunocytochemistry, and rtPCR were performed for analysis of iNOS as well as markers of both autophagy and mitochondrial biogenesis. Results. LPS treatment inhibited aerobic respiration in vitro in wild-type but not iNos-/- cells. Experimental endotoxemia in vivo or in vitro induced iNOS protein and mtROS production. However, induction of mtROS was dependent on iNOS expression. Furthermore, LPS-induced hepatic autophagy/mitophagy and mitochondrial biogenesis were significantly attenuated in iNos-/- mice or cells with NO or mtROS scavenging. These responses were rescued in iNos-/- mice via delivery of NO both in vivo and in vitro. Conclusions. These data suggest that regulation of mitochondrial quality control following hepatocyte LPS exposure is dependent at least in part on a NO-mtROS signaling network. Further investigation to identify specific agents that modulate this process may facilitate the prevention of organ injury in sepsis.


2021 ◽  
Vol 128 (7) ◽  
pp. 993-1020
Author(s):  
Kathy K. Griendling ◽  
Livia L. Camargo ◽  
Francisco J. Rios ◽  
Rhéure Alves-Lopes ◽  
Augusto C. Montezano ◽  
...  

A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2966 ◽  
Author(s):  
Milica Lazarević ◽  
Emanuela Mazzon ◽  
Miljana Momčilović ◽  
Maria Basile ◽  
Giuseppe Colletti ◽  
...  

GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.


2011 ◽  
Vol 169 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Alireza Imani ◽  
Mahdieh Faghihi ◽  
Sayyed Shahabeddin Sadr ◽  
Somayeh Sadeghi Niaraki ◽  
Ali Mohammad Alizadeh

Sign in / Sign up

Export Citation Format

Share Document