The β-subunit of thyrotropin can be cross-linked to its receptor by disuccinimidyl suberate

1985 ◽  
Vol 13 (5) ◽  
pp. 942-943
Author(s):  
PAUL R. BUCKLAND ◽  
THOMAS W. STRICKLAND ◽  
BERNARD REES SMITH
2007 ◽  
Vol 115 (S 1) ◽  
Author(s):  
A Henke ◽  
M Simoni ◽  
E Nieschlag ◽  
J Gromoll

2009 ◽  
Vol 35 (2) ◽  
pp. 370-374
Author(s):  
Bing-Tian MA ◽  
Guang-Lin QU ◽  
Wen-Juan HUANG ◽  
Yu-Fan LIN ◽  
Shi-Gui LI

Author(s):  
Elli Anagnostou ◽  
Alexia Kafkoutsou ◽  
Despina Mavrogianni ◽  
Ekaterini Domali ◽  
Evangelia Dimitroulia ◽  
...  

Background: Molecular biology tools, such as the detection of single nucleotide polymorphisms (SNPs), have been considered to assist to the management of the ovarian stimulation protocols. Purpose: The aim of this study was to evaluate the impact of two polymorphisms, the Asn680Ser polymorphism of the FSHR gene, and the FSH β subunit (FSHβ) gene polymorphism -211 G>T, in a Greek population of women undergoing IVF/ICSI program in our center. In addition, a control group of fertile women was studied, to verify whether there are differences in the genotype distribution between fertile and infertile population for both polymorphisms, as the FSHβ gene polymorphism -211 G>T is studied for the first time in the Greek population. Results : The FSH β-211 G>T polymorphism, studied for the first time in the Greek infertile population, appears to be quite rare. When studying the two polymorphisms separately, statistically significant differences were obtained that concerned the LH levels. Discussion: According to the combination analysis of the two polymorphisms by the number of alleles, women with 2-3 polymorphic alleles needed more days of stimulation, but there were no differences in pregnancy rates. Conclusion: This molecular genetic study helps to elucidate whether the polygenic combination of the Asn680Ser and FSH β subunit -211 G>T gene polymorphisms is of additive value in the prediction of ovarian response to exogenous gonadotropins.


2020 ◽  
Vol 13 (12) ◽  
pp. e236152
Author(s):  
Naveen Parkash Gupta ◽  
Vinita Verma ◽  
Saurabh Chopra ◽  
Vivek Choudhury

Hyperekplexia is an exaggerated startle to external stimuli associated with a generalised increase in tone seen in neonates with both sporadic and genetic predisposition. This is an uncommon neurological entity that is misdiagnosed as seizure. A 28-days-old infant was admitted to us with characteristic intermittent generalised tonic spasm being treated as a seizure disorder. The infant had characteristic stiffening episode, exaggerated startle and non-habituation on tapping the nose. Hyperekplexia was suspected and confirmed by genetic testing (mutation in the β subunit of glycine was found). Initial improvement was seen with the use of clonazepam, which was not sustained. At the age of 4.5 years, the child is still having neurobehavioural issues like hyperactivity and sensory hyper-responsiveness. Usually, hyperekplexia is benign in nature. We report a case of hyperekplexia with non-sense mutation in the β subunit of GlyR gene having abnormal neurodevelopmental findings at 4.5 years.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1445-1454 ◽  
Author(s):  
Xin Jie Chen ◽  
G Desmond Clark-Walker

In a previous report, we found that mutations at the mitochondrial genome integrity locus, MGI1, can convert Kluyveromyces lactis into a petite-positive yeast. In this report, we describe the isolation of the MGI1 gene and show that it encodes the β-subunit of the mitochondrial F1-ATPase. The site of mutation in four independently isolated mgi1 alleles is at Arg435, which has changed to Gly in three cases and Ile in the fourth isolate. Disruption of MGI1 does not lead to the production of mitochondrial genome deletion mutants, indicating that an assembled F1 complex is needed for the “gain-of-function” phenotype found in mgi1 point mutants. The location of Arg435 in the β-subunit, as deduced from the three-dimensional structure of the bovine F1-ATPase, together with mutational sites in the previously identified mgi2 and mgi5 alleles, suggests that interaction of the β- and α- (MGI2) subunits with the γ-subunit (MGI5) is likely to be affected by the mutations.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 253-262 ◽  
Author(s):  
Alexei V Tulin ◽  
Galina L Kogan ◽  
Dominik Filipp ◽  
Maria D Balakireva ◽  
Vladimir A Gvozdev

The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 β-subunit; one gene is interrupted by an insertion. The heterochromatic array of Stellate repeats is divided into three regions by a 4.5-kb DNA segment of unknown origin and a retrotransposon insertion: the A region (∼14 Stellate genes), the adjacent B region (approximately three Stellate genes), and the C region (about four Stellate genes). The sequencing of Stellate copies located along the discontinuous cluster revealed a complex pattern of diversification. The lowest level of divergence was detected in nearby Stellate repeats. The marginal copies of the A region, truncated or interrupted by an insertion, escaped homogenization and demonstrated high levels of divergence. Comparison of copies in the B and C regions, which are separated by a retrotransposon insertion, revealed a high level of diversification. These observations suggest that homogenization takes place in the Stellate cluster, but that inserted sequences may impede this process.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1134
Author(s):  
Hao-Qi Wang ◽  
Wei-Di Zhang ◽  
Bao Yuan ◽  
Jia-Bao Zhang

Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.


Sign in / Sign up

Export Citation Format

Share Document