The role of Rap1 in integrin-mediated cell adhesion

2003 ◽  
Vol 31 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J.L. Bos ◽  
K. de Bruyn ◽  
J. Enserink ◽  
B. Kuiperij ◽  
S. Rangarajan ◽  
...  

Rap1 is a member of the Ras-like small GTPases. Originally the protein was identified in a genome-wide screen for suppressors of Ras transformation, but the mechanism of this reversion remained elusive. We have investigated the signalling function of Rap1. We observed that Rap1 is activated by a large variety of stimuli, including growth factors, neurotransmitters and cytokines. Common second messengers like cAMP, diacylglycerol and calcium are mediators of this activation. These messengers activate guanine nucleotide exchange factors (GEFs), the most notable of which is Epac (exchange protein directly activated by cAMP). However, the downstream effectors of Rap1 are less clear. Although direct connections of Rap1 with the serine/threonine kinases Raf1 and B-raf have been reported, we were unable to find functional evidence for an interaction of endogenous Rap1 signalling with the Raf/extracellular-signal-regulated kinase (ERK) pathway. Instead we observe a clear connection of Rap1 with inside-out signalling to integrins. Indeed, introduction of a constitutively active Rap1 as well as Epac induces integrin-mediated cell adhesion, whereas inhibition of Rap1 signalling by the introduction of Rap1GAP (GTPase-activating protein) inhibits inside-out activation of integrins. More importantly, activation of a Gs-protein-coupled receptor results in integrin-mediated cell adhesion, by a pathway involving Epac and Rap1. From these results, we conclude that one of the functions of receptor-induced Rap1 activation is inside-out regulation of integrins.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3308 ◽  
Author(s):  
Toma-Fukai ◽  
Shimizu

Small GTPases are key regulators of cellular events, and their dysfunction causes many types of cancer. They serve as molecular switches by cycling between inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states. GTPases are deactivated by GTPase-activating proteins (GAPs) and are activated by guanine-nucleotide exchange factors (GEFs). The intrinsic GTP hydrolysis activity of small GTPases is generally low and is accelerated by GAPs. GEFs promote GDP dissociation from small GTPases to allow for GTP binding, which results in a conformational change of two highly flexible segments, called switch I and switch II, that enables binding of the gamma phosphate and allows small GTPases to interact with downstream effectors. For several decades, crystal structures of many GEFs and GAPs have been reported and have shown tremendous structural diversity. In this review, we focus on the latest structural studies of GEFs. Detailed pictures of the variety of GEF mechanisms at atomic resolution can provide insights into new approaches for drug discovery.


2008 ◽  
Vol 19 (5) ◽  
pp. 1883-1892 ◽  
Author(s):  
Shai Mulinari ◽  
Mojgan Padash Barmchi ◽  
Udo Häcker

Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis.


2007 ◽  
Vol 409 (2) ◽  
pp. 525-533 ◽  
Author(s):  
Nahum Meller ◽  
M. Jody Westbrook ◽  
John D. Shannon ◽  
Chittibabu Guda ◽  
Martin A. Schwartz

Rho family small GTPases are critical regulators of multiple cellular functions. Dbl-homology-domain-containing proteins are the classical GEFs (guanine nucleotide exchange factors) responsible for activation of Rho proteins. Zizimin1 is a Cdc42-specific GEF that belongs to a second family of mammalian Rho-GEFs, CZH [CDM (Ced-5/DOCK180/Myoblast city)-zizimin homology] proteins, which possess a novel type of GEF domain. CZH proteins can be divided into a subfamily related to DOCK 180 and a subfamily related to zizimin1. The two groups share two conserved regions named the CZH1 (or DHR1) domain and the CZH2 (DHR2 or DOCKER) domains, the latter exhibiting GEF activity. We now show that limited proteolysis of zizimin1 suggests the existence of structural domains that do not correspond to those identified on the basis of homologies. We demonstrate that the N-terminal half binds to the GEF domain through three distinct areas, including the CZH1, to inhibit the interaction with Cdc42. The N-terminal PH (pleckstrin homology) domain binds phosphoinositides and mediates zizimin1 membrane targeting. These results define two novel functions for the N-terminal region of zizimin1.


2021 ◽  
Vol 22 (18) ◽  
pp. 10168
Author(s):  
Lanette Kempers ◽  
Amber J. M. Driessen ◽  
Jos van Rijssel ◽  
Martijn A. Nolte ◽  
Jaap D. van Buul

Many cellular processes are controlled by small GTPases, which can be activated by guanine nucleotide exchange factors (GEFs). The RhoGEF Trio contains two GEF domains that differentially activate the small GTPases such as Rac1/RhoG and RhoA. These small RhoGTPases are mainly involved in the remodeling of the actin cytoskeleton. In the endothelium, they regulate junctional stabilization and play a crucial role in angiogenesis and endothelial barrier integrity. Multiple extracellular signals originating from different vascular processes can influence the activity of Trio and thereby the regulation of the forementioned small GTPases and actin cytoskeleton. This review elucidates how various signals regulate Trio in a distinct manner, resulting in different functional outcomes that are crucial for endothelial cell function in response to inflammation.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1676 ◽  
Author(s):  
Andrew B. Goryachev ◽  
Marcin Leda

Small GTPases are organizers of a plethora of cellular processes. The time and place of their activation are tightly controlled by the localization and activation of their regulators, guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Remarkably, in some systems, the upstream regulators of GTPases are also found downstream of their activity. Resulting feedback loops can generate complex spatiotemporal dynamics of GTPases with important functional consequences. Here we discuss the concept of positive autoregulation of small GTPases by the GEF–effector feedback modules and survey recent developments in this exciting area of cell biology.


2020 ◽  
Vol 295 (11) ◽  
pp. 3652-3663
Author(s):  
Riko Kinoshita ◽  
Yuta Homma ◽  
Mitsunori Fukuda

Polarized epithelial cells have functionally distinct apical and basolateral membranes through which they communicate with external and internal bodily environments, respectively. The establishment and maintenance of this asymmetric structure depend on polarized trafficking of specific cargos, but the precise molecular mechanism is incompletely understood. We previously showed that Rab35, a member of the Rab family small GTPases, differentially regulates the trafficking of an apical cargo, podocalyxin (PODXL), in two-dimensional (2D) and three-dimensional (3D) Madin–Darby canine kidney (MDCK) II cell cultures through specific interactions with two distinct effectors, OCRL inositol polyphosphate-5-phosphatase (OCRL) and ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 2 (ACAP2), respectively. However, whether the upstream regulators of Rab35 also differ depending on the culture conditions remains completely unknown. Here, we investigated four known guanine nucleotide exchange factors (GEFs) of Rab35, namely DENN domain–containing 1A (DENND1A), DENND1B, DENND1C, and folliculin (FLCN), and demonstrate that DENND1A and FLCN exhibit distinct requirements for Rab35-dependent PODXL trafficking under the two culture conditions. In 3D cell cultures, only DENDN1A-knockout cysts exhibited the inverted localization of PODXL similar to that of Rab35-knockout cysts. Moreover, the DENN domain, harboring GEF activity toward Rab35, was required for proper PODXL trafficking to the apical membrane. By contrast, FLCN-knockdown cells specifically accumulated PODXL in actin-rich structures similar to the Rab35-knockdown cells in 2D cell cultures. Our findings indicate that two distinct functional cascades of Rab35, the FLCN-Rab35-OCRL and the DENND1A-Rab35-ACAP2 axes, regulate PODXL trafficking in 2D and 3D MDCK II cell cultures, respectively.


2020 ◽  
Vol 21 (10) ◽  
pp. 3680 ◽  
Author(s):  
Francesc Tebar ◽  
Albert Chavero ◽  
Neus Agell ◽  
Albert Lu ◽  
Carles Rentero ◽  
...  

Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

ARF small GTPases are molecular switches acting in intracellular trafficking. Their cycles of activity are controlled by regulators, ARF Guanine nucleotide Exchange Factors (ARF-GEFs) and ARF GTPase Activating Proteins (ARF-GAPs). The ARF-GEF GNOM (GN) and the ARF-GAP VAN3 share a prominent function in auxin-mediated developmental patterning, but the ARFs which they might control were not identified. We conducted a loss-of-function and localization-based screening of the ARF/ARF-LIKE gene family in Arabidopsis thaliana with the primary aim of identifying functional partners of GN and VAN3, while extending the limited understanding of this gene group as a whole. We identified a function of ARLA1 in branching angle control. Mutants lacking the variably localized ARLB1, ARFB1, ARFC1, ARFD1, and ARF3, even in high order combinations, do not exhibit any evident phenotypes. Loss of function arfa1 phenotypes support a major role of ARFA1 in growth and development overall, but patterning defects typical to gn loss of function are not found. ARFA1 are not localized at the plasma membrane, where GN and VAN3 carry out developmental patterning function according to current models. Taken together, putative ARF partners of GN and VAN3 in developmental patterning cannot be conclusively identified.


Sign in / Sign up

Export Citation Format

Share Document