N-oxide sensing and denitrification: the DNR transcription factors

2006 ◽  
Vol 34 (1) ◽  
pp. 185-187 ◽  
Author(s):  
S. Rinaldo ◽  
G. Giardina ◽  
M. Brunori ◽  
F. Cutruzzolà

All denitrifiers can keep the steady-state concentrations of nitrite and nitric oxide (NO) below cytotoxic levels by controlling the expression of denitrification gene clusters by redox signalling through transcriptional regulators belonging to the CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulator) superfamily.

2018 ◽  
Vol 200 (7) ◽  
Author(s):  
Jeong-A Kim ◽  
Mi-Ae Lee ◽  
You-Chul Jung ◽  
Bo-Ram Jang ◽  
Kyu-Ho Lee

ABSTRACTSepticemia-causingVibrio vulnificusproduces at least three exoproteases, VvpE, VvpS, and VvpM, all of which participate in interactions with human cells. Expression of VvpE and VvpS is induced in the stationary phase by multiple transcription factors, including sigma factor S, SmcR, and the cAMP-cAMP receptor protein (cAMP-CRP) complex. Distinct roles of VvpM, such as induction of apoptosis, lead us to hypothesize VvpM expression is different from that of the other exoproteases. Its transcription, which was found to be independent of sigma S, is induced at the early exponential phase and then becomes negligible upon entry into the stationary phase. SmcR and CRP were studied regarding the control ofvvpMexpression. Transcription ofvvpMwas repressed by SmcR and cAMP-CRP complex individually, which specifically bound to the regions −2 to +20 and +6 to +27, respectively, relative to thevvpMtranscription initiation site. Derepression ofvvpMgene expression was 10- to 40-fold greater in ansmcR crpdouble mutant than in single-gene mutants. Therefore, these results show that the expression ofV. vulnificusexoproteases is differentially regulated, and in this way, distinct proteases can engage in specific interactions with a host.IMPORTANCEAn opportunistic human pathogen,Vibrio vulnificusproduces multiple extracellular proteases that are involved in diverse interactions with a host. The total exoproteolytic activity is detected mainly in the supernatants of the high-cell-density cultures. However, some proteolytic activity derived from a metalloprotease, VvpM, was present in the supernatants of the low-cell-density cultures sampled at the early growth period. In this study, we present the regulatory mechanism for VvpM expression via repression by at least two transcription factors. This type of transcriptional regulation is the exact opposite of those for expression of the otherV. vulnificusexoproteases. Differential regulation of each exoprotease's production then facilitates the pathogen's participation in the distinct interactions with a host.


2006 ◽  
Vol 34 (1) ◽  
pp. 156-159 ◽  
Author(s):  
S. Mesa ◽  
H. Hennecke ◽  
H.-M. Fischer

In Bradyrhizobium japonicum, the nitrogen-fixing soya bean endosymbiont and facultative denitrifier, three CRP (cAMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein)-type transcription factors [FixK1, FixK2 and NnrR (nitrite and nitric oxide reductase regulator)] have been studied previously in the context of the regulation of nitrogen fixation and denitrification. The gene expression of both fixK1 and nnrR depends on FixK2, which acts as a key distributor of the ‘low-oxygen’ signal perceived by the two-component regulatory system FixLJ. While the targets for FixK1 are not known, NnrR transduces the nitrogen oxide signal to the level of denitrification gene expression. Besides these three regulators, the complete genome sequence of this organism has revealed the existence of 13 additional CRP/FNR-type proteins whose functions have not yet been studied. Based on sequence similarity and phylogenetic analysis, we discuss in this paper the peculiarities of these additional factors.


2015 ◽  
Vol 59 (5) ◽  
pp. 2713-2719 ◽  
Author(s):  
Wendy W. K. Mok ◽  
Mehmet A. Orman ◽  
Mark P. Brynildsen

ABSTRACTBacterial persisters are phenotypic variants with an extraordinary capacity to tolerate antibiotics, and they are hypothesized to be a main cause of chronic and relapsing infections. Recent evidence has suggested that the metabolism of persisters can be targeted to develop therapeutic countermeasures; however, knowledge of persister metabolism remains limited due to difficulties associated with isolating these rare and transient phenotypic variants. By using a technique to measure persister catabolic activity, which is based on the ability of metabolites to enable aminoglycoside (AG) killing of persisters, we investigated the role of seven global transcriptional regulators (ArcA, Cra, cyclic AMP [cAMP] receptor protein [CRP], DksA, FNR, Lrp, and RpoS) on persister metabolism. We found that removal of CRP resulted in a loss of AG potentiation in persisters for all metabolites tested. These results highlight a central role for cAMP/CRP in persister metabolism, as its perturbation can significantly diminish the metabolic capabilities of persisters and effectively eliminate the ability of AGs to eradicate these troublesome bacteria.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Jainaba Manneh-Roussel ◽  
James R. J. Haycocks ◽  
Andrés Magán ◽  
Nicolas Perez-Soto ◽  
Kerstin Voelz ◽  
...  

ABSTRACTThe bacteriumVibrio choleraeis native to aquatic environments and can switch lifestyles to cause disease in humans. Lifestyle switching requires modulation of genetic systems for quorum sensing, intestinal colonization, and toxin production. Much of this regulation occurs at the level of gene expression and is controlled by transcription factors. In this work, we have mapped the binding of cAMP receptor protein (CRP) and RNA polymerase across theV. choleraegenome. We show that CRP is an integral component of the regulatory network that controls lifestyle switching. Focusing on a locus necessary for toxin transport, we demonstrate CRP-dependent regulation of gene expression in response to host colonization. Examination of further CRP-targeted genes reveals that this behavior is commonplace. Hence, CRP is a key regulator of manyV. choleraegenes in response to lifestyle changes.IMPORTANCECholera is an infectious disease that is caused by the bacteriumVibrio cholerae. Best known for causing disease in humans, the bacterium is most commonly found in aquatic ecosystems. Hence, humans acquire cholera following ingestion of food or water contaminated withV. cholerae. Transition between an aquatic environment and a human host triggers a lifestyle switch that involves reprogramming ofV. choleraegene expression patterns. This process is controlled by a network of transcription factors. In this paper, we show that the cAMP receptor protein (CRP) is a key regulator ofV. choleraegene expression in response to lifestyle changes.


1983 ◽  
Vol 258 (11) ◽  
pp. 6979-6983 ◽  
Author(s):  
R Rangel-Aldao ◽  
G Tovar ◽  
M Ledezma de Ruiz

1999 ◽  
Vol 337 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Emma C. LAW ◽  
Nigel J. SAVERY ◽  
Stephen J. W. BUSBY

The Escherichia coli cAMP receptor protein (CRP) is a factor that activates transcription at over 100 target promoters. At Class I CRP-dependent promoters, CRP binds immediately upstream of RNA polymerase and activates transcription by making direct contacts with the C-terminal domain of the RNA polymerase α subunit (αCTD). Since αCTD is also known to interact with DNA sequence elements (known as UP elements), we have constructed a series of semi-synthetic Class I CRP-dependent promoters, carrying both a consensus DNA-binding site for CRP and a UP element at different positions. We previously showed that, at these promoters, the CRP–αCTD interaction and the CRP–UP element interaction contribute independently and additively to transcription initiation. In this study, we show that the two halves of the UP element can function independently, and that, in the presence of the UP element, the best location for the DNA site for CRP is position -69.5. This suggests that, at Class I CRP-dependent promoters where the DNA site for CRP is located at position -61.5, the two αCTDs of RNA polymerase are not optimally positioned. Two experiments to test this hypothesis are presented.


2000 ◽  
Vol 275 (9) ◽  
pp. 6241-6245 ◽  
Author(s):  
Hidehisa Yoshimura ◽  
Toru Hisabori ◽  
Shuichi Yanagisawa ◽  
Masayuki Ohmori

Sign in / Sign up

Export Citation Format

Share Document