scholarly journals Peroxisome biogenesis and positioning

2010 ◽  
Vol 38 (3) ◽  
pp. 807-816 ◽  
Author(s):  
Alison Baker ◽  
Imogen A. Sparkes ◽  
Laura-Anne Brown ◽  
Catherine O'Leary-Steele ◽  
Stuart L. Warriner

Plant peroxisomes are extremely dynamic, moving and undergoing changes of shape in response to metabolic and environmental signals. Matrix proteins are imported via one of two import pathways, depending on the targeting signal within the protein. Each pathway has a specific receptor but utilizes common membrane-bound translocation machinery. Current models invoke receptor recycling, which may involve cycles of ubiquitination. Some components of the import machinery may also play a role in proteolytic turnover of matrix proteins, prompting parallels with the endoplasmic-reticulum-associated degradation pathway. Peroxisome membrane proteins, some of which are imported post-translationally, others of which may traffic to peroxisomes via the endoplasmic reticulum, use distinct proteinaceous machinery. The isolation of mutants defective in peroxisome biogenesis has served to emphasize the important role of peroxisomes at all stages of the plant life cycle.

2003 ◽  
Vol 14 (3) ◽  
pp. 939-957 ◽  
Author(s):  
Roger A. Bascom ◽  
Honey Chan ◽  
Richard A. Rachubinski

Pex3p is a peroxisomal integral membrane protein required early in peroxisome biogenesis, and Pex3p-deficient cells lack identifiable peroxisomes. Two temperature-sensitive pex3 mutant strains of the yeast Yarrowia lipolytica were made to investigate the role of Pex3p in the early stages of peroxisome biogenesis. In glucose medium at 16°C, these mutants underwent de novo peroxisome biogenesis and exhibited early matrix protein sequestration into peroxisome-like structures found at the endoplasmic reticulum-rich periphery of cells or sometimes associated with nuclei. The de novo peroxisome biogenesis seemed unsynchronized, with peroxisomes occurring at different stages of development both within cells and between cells. Cells with peripheral nascent peroxisomes and cells with structures morphologically distinct from peroxisomes, such as semi/circular tubular structures that immunostained with antibodies to peroxisomal matrix proteins and to the endoplasmic reticulum-resident protein Kar2p, and that surrounded lipid droplets, were observed during up-regulation of peroxisome biogenesis in cells incubated in oleic acid medium at 16°C. These structures were not detected in wild-type or Pex3p-deficient cells. Their role in peroxisome biogenesis remains unclear. Targeting of peroxisomal matrix proteins to these structures suggests that Pex3p directly or indirectly sequesters components of the peroxisome biogenesis machinery. Such a role is consistent with Pex3p overexpression producing cells with fewer, larger, and clustered peroxisomes.


2001 ◽  
Vol 114 (11) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tineke Voorn-Brouwer ◽  
Astrid Kragt ◽  
Henk F. Tabak ◽  
Ben Distel

The classic model for peroxisome biogenesis states that new peroxisomes arise by the fission of pre-existing ones and that peroxisomal matrix and membrane proteins are recruited directly from the cytosol. Recent studies challenge this model and suggest that some peroxisomal membrane proteins might traffic via the endoplasmic reticulum to peroxisomes. We have studied the trafficking in human fibroblasts of three peroxisomal membrane proteins, Pex2p, Pex3p and Pex16p, all of which have been suggested to transit the endoplasmic reticulum before arriving in peroxisomes. Here, we show that targeting of these peroxisomal membrane proteins is not affected by inhibitors of COPI and COPII that block vesicle transport in the early secretory pathway. Moreover, we have obtained no evidence for the presence of these peroxisomal membrane proteins in compartments other than peroxisomes and demonstrate that COPI and COPII inhibitors do not affect peroxisome morphology or integrity. Together, these data fail to provide any evidence for a role of the endoplasmic reticulum in peroxisome biogenesis.


2000 ◽  
Vol 11 (5) ◽  
pp. 1697-1708 ◽  
Author(s):  
Sharon Wilhovsky ◽  
Richard Gardner ◽  
Randolph Hampton

Work from several laboratories has indicated that many different proteins are subject to endoplasmic reticulum (ER) degradation by a common ER-associated machinery. This machinery includes ER membrane proteins Hrd1p/Der3p and Hrd3p and the ER-associated ubiquitin-conjugating enzymes Ubc7p and Ubc6p. The wide variety of substrates for this degradation pathway has led to the reasonable hypothesis that the HRD (Hmg CoA reductase degradation) gene-encoded proteins are generally involved in ER protein degradation in eukaryotes. We have tested this model by directly comparing the HRD dependency of the ER-associated degradation for various ER membrane proteins. Our data indicated that the role of HRD genes in protein degradation, even in this highly defined subset of proteins, can vary from absolute dependence to complete independence. Thus, ER-associated degradation can occur by mechanisms that do not involve Hrd1p or Hrd3p, despite their apparently broad envelope of substrates. These data favor models in which the HRD gene-encoded proteins function as specificity factors, such as ubiquitin ligases, rather than as factors involved in common aspects of ER degradation.


1996 ◽  
Vol 135 (1) ◽  
pp. 85-95 ◽  
Author(s):  
S J Gould ◽  
J E Kalish ◽  
J C Morrell ◽  
J Bjorkman ◽  
A J Urquhart ◽  
...  

Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome-associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.


2001 ◽  
Vol 153 (6) ◽  
pp. 1141-1150 ◽  
Author(s):  
Jacob M. Jones ◽  
James C. Morrell ◽  
Stephen J. Gould

Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.


1998 ◽  
Vol 18 (5) ◽  
pp. 2789-2803 ◽  
Author(s):  
Vladimir I. Titorenko ◽  
Richard A. Rachubinski

ABSTRACT Mutations in the SEC238 and SRP54 genes of the yeast Yarrowia lipolytica not only cause temperature-sensitive defects in the exit of the precursor form of alkaline extracellular protease and of other secretory proteins from the endoplasmic reticulum and in protein secretion but also lead to temperature-sensitive growth in oleic acid-containing medium, the metabolism of which requires the assembly of functionally intact peroxisomes. The sec238A andsrp54KO mutations at the restrictive temperature significantly reduce the size and number of peroxisomes, affect the import of peroxisomal matrix and membrane proteins into the organelle, and significantly delay, but do not prevent, the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX1 and PEX6 genes, which encode members of the AAA family of N-ethylmaleimide-sensitive fusion protein-like ATPases, not only affect the exit of precursor forms of secretory proteins from the endoplasmic reticulum but also prevent the exit of the peroxisomal membrane proteins Pex2p and Pex16p from the endoplasmic reticulum and cause the accumulation of an extensive network of endoplasmic reticulum membranes. None of the peroxisomal matrix proteins tested associated with the endoplasmic reticulum in sec238A,srp54KO, pex1-1, and pex6KO mutant cells. Our data provide evidence that the endoplasmic reticulum is required for peroxisome biogenesis and suggest that inY. lipolytica, the trafficking of some membrane proteins, but not matrix proteins, to the peroxisome occurs via the endoplasmic reticulum, results in their glycosylation within the lumen of the endoplasmic reticulum, does not involve transport through the Golgi, and requires the products encoded by the SEC238, SRP54,PEX1, and PEX6 genes.


2015 ◽  
Vol 211 (5) ◽  
pp. 1041-1056 ◽  
Author(s):  
Alison M. Motley ◽  
Paul C. Galvin ◽  
Lakhan Ekal ◽  
James M. Nuttall ◽  
Ewald H. Hettema

A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum–derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.


2000 ◽  
Vol 347 (3) ◽  
pp. 601-612 ◽  
Author(s):  
Frank VAN VOORST ◽  
Ben DE KRUIJFF

The architecture of cells, with various membrane-bound compartments and with the protein synthesizing machinery confined to one location, dictates that many proteins have to be transported through one or more membranes during their biogenesis. A lot of progress has been made on the identification of protein translocation machineries and their sorting signals in various organelles and organisms. Biochemical characterization has revealed the functions of several individual protein components. Interestingly, lipid components were also found to be essential for the correct functioning of these translocases. This led to the idea that there is a very intimate relationship between the lipid and protein components that enables them to fulfil their intriguing task of transporting large biopolymers through a lipid bilayer without leaking their contents. In this review we focus on the Sec translocases in the endoplasmic reticulum and the bacterial inner membrane. We also highlight the interactions of lipids and proteins during the process of translocation and integrate this into a model that enables us to understand the role of membrane lipid composition in translocase function.


2006 ◽  
Vol 27 (3) ◽  
pp. 1027-1043 ◽  
Author(s):  
Satomi Nadanaka ◽  
Tetsuya Okada ◽  
Hiderou Yoshida ◽  
Kazutoshi Mori

ABSTRACT ATF6 is a membrane-bound transcription factor activated by proteolysis in response to endoplasmic reticulum (ER) stress to induce the transcription of ER chaperone genes. We show here that, owing to the presence of intra- and intermolecular disulfide bridges formed between the two conserved cysteine residues in the luminal domain, ATF6 occurs in unstressed ER in monomer, dimer, and oligomer forms. Disulfide-bonded ATF6 is reduced upon treatment of cells with not only the reducing reagent dithiothreitol but also the glycosylation inhibitor tunicamycin, and the extent of reduction correlates with that of activation. Although reduction is not sufficient for activation, fractionation studies show that only reduced monomer ATF6 reaches the Golgi apparatus, where it is cleaved by the sequential action of the two proteases S1P and S2P. Reduced monomer ATF6 is found to be a better substrate than disulfide-bonded forms for S1P. ER stress-induced reduction is specific to ATF6 as the oligomeric status of a second ER membrane-bound transcription factor, LZIP/Luman, is not changed upon tunicamycin treatment and LZIP/Luman is well cleaved by S1P in the absence of ER stress. This mechanism ensures the strictness of regulation, in that the cell can only process ATF6 which has experienced the changes in the ER.


1994 ◽  
Vol 127 (5) ◽  
pp. 1259-1273 ◽  
Author(s):  
J A Heyman ◽  
E Monosov ◽  
S Subramani

Several groups have reported the cloning and sequencing of genes involved in the biogenesis of yeast peroxisomes. Yeast strains bearing mutations in these genes are unable to grow on carbon sources whose metabolism requires peroxisomes, and these strains lack morphologically normal peroxisomes. We report the cloning of Pichia pastoris PAS1, the homologue (based on a high level of protein sequence similarity) of the Saccharomyces cerevisiae PAS1. We also describe the creation and characterization of P. pastoris pas1 strains. Electron microscopy on the P. pastoris pas1 cells revealed that they lack morphologically normal peroxisomes, and instead contain membrane-bound structures that appear to be small, mutant peroxisomes, or "peroxisome ghosts." These "ghosts" proliferated in response to induction on peroxisome-requiring carbon sources (oleic acid and methanol), and they were distributed to daughter cells. Biochemical analysis of cell lysates revealed that peroxisomal proteins are induced normally in pas1 cells. Peroxisome ghosts from pas1 cells were purified on sucrose gradients, and biochemical analysis showed that these ghosts, while lacking several peroxisomal proteins, did import varying amounts of several other peroxisomal proteins. The existence of detectable peroxisome ghosts in P. pastoris pas1 cells, and their ability to import some proteins, stands in contrast with the results reported by Erdmann et al. (1991) for the S. cerevisiae pas1 mutant, in which they were unable to detect peroxisome-like structures. We discuss the role of PAS1 in peroxisome biogenesis in light of the new information regarding peroxisome ghosts in pas1 cells.


Sign in / Sign up

Export Citation Format

Share Document