Functional implications of the association of tau with the plasma membrane

2010 ◽  
Vol 38 (4) ◽  
pp. 1012-1015 ◽  
Author(s):  
Amy M. Pooler ◽  
Diane P. Hanger

Tau is an abundant microtubule-associated protein which regulates the stability of the cytoskeleton. Tau binds microtubules directly through microtubule-binding domains in its C-terminus. However, tau is not only located in the cytosol of cells, but also associated with other intracellular domains, including the plasma membrane, suggesting that tau may have additional functions other than stabilizing the neuronal cytoskeleton. Localization of tau at the cell surface appears to be dependent on interactions of the N-terminal projection domain of tau. Furthermore, membrane-associated tau is dephosphorylated at serine/threonine residues, suggesting that the phosphorylation state of tau regulates its intracellular trafficking. Dephosphorylation of tau may increase the association of tau with trafficking proteins which target tau to the plasma membrane. Thus it is possible that the hyperphosphoryation of tau may contribute to the pathogenesis of Alzheimer's disease by promoting the formation of neurofibrillary tangles from cytosolic tau, and also by inhibiting additional tau functions through disruption of its targeting to the plasma membrane.

2009 ◽  
Vol 418 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Audrey Parent ◽  
Emilie Hamelin ◽  
Pascale Germain ◽  
Jean-Luc Parent

The β2ARs (β2-adrenergic receptors) undergo ligand-induced internalization into early endosomes, but then are rapidly and efficiently recycled back to the plasma membrane, restoring the numbers of functional cell-surface receptors. Gathering evidence suggests that, during prolonged exposure to agonist, some β2ARs also utilize a slow recycling pathway through the perinuclear recycling endosomal compartment regulated by the small GTPase Rab11. In the present study, we demonstrate by co-immunoprecipitation studies that there is a β2AR–Rab11 association in HEK-293 cells (human embryonic kidney cells). We show using purified His6-tagged Rab11 protein and β2AR intracellular domains fused to GST (glutathione transferase) that Rab11 interacts directly with the C-terminal tail of β2AR, but not with the other intracellular domains of the receptor. Pull-down and immunoprecipitation assays revealed that the β2AR interacts preferentially with the GDP-bound form of Rab11. Arg333 and Lys348 in the C-terminal tail of the β2AR were identified as crucial determinants for Rab11 binding. A β2AR construct with these two residues mutated to alanine, β2AR RK/AA (R333A/K348A), was generated. Analysis of cell-surface receptors by ELISA revealed that the recycling of β2AR RK/AA was drastically reduced when compared with wild-type β2AR after agonist washout, following prolonged receptor stimulation. Confocal microscopy demonstrated that the β2AR RK/AA mutant failed to co-localize with Rab11 and recycle to the plasma membrane, in contrast with the wild-type receptor. To our knowledge, the present study is the first report of a direct interaction between the β2AR and a Rab GTPase, which is required for the accurate intracellular trafficking of the receptor.


2001 ◽  
Vol 356 (2) ◽  
pp. 539-547 ◽  
Author(s):  
Mónica GARCÍA-GALLO ◽  
Jaime RENART ◽  
Margarita DÍAZ-GUERRA

We have used a heterologous system of expression of N-methyl-d-aspartate (NMDA) receptors based on the use of vaccinia virus to analyse the maturation, transport, assembly and differential expression of the NR1 and NR2A subunits of the receptors. We have demonstrated that the NR1 subunit is efficiently transported to the plasma membrane in cells expressing NR1 alone, similarly to cells producing NR1 and NR2A together. In contrast, NR2A requires NR1 expression to be located at the cell surface. The stability of both receptor subunits expressed alone is similar to that obtained in cells producing NR1 and NR2A. In pulse–chase experiments, the NR1 subunit displays a biphasic decay, with a fraction of the protein having a half-life of only 1h and the remaining presenting a turnover longer than 24h, similar to values obtained for the NR2A subunit. Our results also show a maturation process affecting the carbohydrate moiety in the NR1 subunit, such that immature NR1has a much shorter half-life than the mature form or the NR2A subunit. Finally, we show that only a fraction of mature NR1 interacts with NR2A to form multimeric functional complexes.


2005 ◽  
Vol 280 (43) ◽  
pp. 36195-36205 ◽  
Author(s):  
Emilie Hamelin ◽  
Caroline Thériault ◽  
Geneviève Laroche ◽  
Jean-Luc Parent

Intracellular trafficking pathways of cell surface receptors following their internalization are the subject of intense research efforts. However, the mechanisms by which they recycle back to the cell surface are still poorly defined. We have recently demonstrated that the small Rab11 GTPase protein is a determinant factor in controlling the recycling to the cell surface of the β-isoform of the thromboxane A2 receptor (TPβ) following its internalization. Here, we demonstrate with co-immunoprecipitation studies in HEK293 cells that there is a Rab11-TPβ association occurring in the absence of agonist, which is not modulated by stimulation of TPβ. We show with purified TPβ intracellular domains fused to GST and HIS-Rab11 proteins that Rab11 interacts directly with the first intracellular loop and the C-tail of TPβ. Amino acids 335–344 of the TPβ C-tail were determined to be essential for the interaction of Rab11 with this receptor domain. This identified sequence appears to be important in directing the intracellular trafficking of the receptor from the Rab5-positive intracellular compartment to the perinuclear recycling endosome. Interestingly, our data indicate that TPβ interacts with the GDP-bound form, and not the GTP-bound form, of Rab11 which is necessary for recycling of the receptor back to the cell surface. To our knowledge, this is the first demonstration of a direct interaction between Rab11 and a transmembrane receptor.


2008 ◽  
Vol 19 (7) ◽  
pp. 2777-2788 ◽  
Author(s):  
Nathan Myhill ◽  
Emily M. Lynes ◽  
Jalal A. Nanji ◽  
Anastassia D. Blagoveshchenskaya ◽  
Hao Fei ◽  
...  

Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the interaction of calnexin with the cytosolic sorting protein PACS-2 distributes calnexin between the rough ER, the MAM, and the plasma membrane. Under control conditions, more than 80% of calnexin localizes to the ER, with the majority on the MAM. PACS-2 knockdown disrupts the calnexin distribution within the ER and increases its levels on the cell surface. Phosphorylation by protein kinase CK2 of two calnexin cytosolic serines (Ser554/564) reduces calnexin binding to PACS-2. Consistent with this, a Ser554/564 [Formula: see text] Asp phosphomimic mutation partially reproduces PACS-2 knockdown by increasing the calnexin signal on the cell surface and reducing it on the MAM. PACS-2 knockdown does not reduce retention of other ER markers. Therefore, our results suggest that the phosphorylation state of the calnexin cytosolic domain and its interaction with PACS-2 sort this chaperone between domains of the ER and the plasma membrane.


2020 ◽  
Vol 48 (3) ◽  
pp. 1129-1138 ◽  
Author(s):  
Yi-Shi Liu ◽  
Morihisa Fujita

Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.


2005 ◽  
Vol 16 (9) ◽  
pp. 4183-4201 ◽  
Author(s):  
Brent C. Reed ◽  
Christopher Cefalu ◽  
Bryan H. Bellaire ◽  
James A. Cardelli ◽  
Thomas Louis ◽  
...  

We identified a novel interaction between myosin VI and the GLUT1 transporter binding protein GLUT1CBP(GIPC1) and first proposed that as an adapter molecule it might function to couple vesicle-bound proteins to myosin VI movement. This study refines the model by identifying two myosin VI binding domains in the GIPC1 C terminus, assigning respective oligomerization and myosin VI binding functions to separate N- and C-terminal domains, and defining a central region in the myosin VI tail that binds GIPC1. Data further supporting the model demonstrate that 1) myosin VI and GIPC1 interactions do not require a mediating protein; 2) the myosin VI binding domain in GIPC1 is necessary for intracellular interactions of GIPC1 with myosin VI and recruitment of overexpressed myosin VI to membrane structures, but not for the association of GIPC1 with such structures; 3) GIPC1/myosin VI complexes coordinately move within cellular extensions of the cell in an actin-dependent and microtubule-independent manner; and 4) blocking either GIPC1 interactions with myosin VI or GLUT1 interactions with GIPC1 disrupts normal GLUT1 trafficking in polarized epithelial cells, leading to a reduction in the level of GLUT1 in the plasma membrane and concomitant accumulation in internal membrane structures.


1996 ◽  
Vol 109 (3) ◽  
pp. 675-685 ◽  
Author(s):  
S. Ponnambalam ◽  
M. Girotti ◽  
M.L. Yaspo ◽  
C.E. Owen ◽  
A.C. Perry ◽  
...  

cDNAs encoding the human and macaque homologues of rat TGN38 have been cloned and sequenced. The proteins have a highly conserved N terminus (comprising the signal peptide) and C terminus (comprising part of the lumenal domain, the membrane spanning region and cytoplasmic tail) but vary in the other part of the lumenal domain, which contains the repeat region. Whereas rat TGN38 contains 6 tandem repeats of an 8mer, both primate proteins possess 14 tandem repeats of a 14mer sequence. The human protein, like rat TGN38, is localised primarily to the TGN but is present on the cell surface and returns via endosomes. This behaviour is consistent with conservation of the membrane spanning region and the cytoplasmic tail, which contain the retention and retrieval signals, respectively, for localisation in the TGN. The unexpected differences in the lumenal domain can best be rationalised by the fact that both types of repeat domains have most of the properties of mucins. We suggest that TGN38 homologues are mucin-like molecules that regulate membrane traffic to and from the TGN.


Biology Open ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
R. Sikora ◽  
P. Bun ◽  
L. Danglot ◽  
M. Alqabandi ◽  
P. Bassereau ◽  
...  

ABSTRACT Secreted proteins are transported along intracellular route from the endoplasmic reticulum through the Golgi before reaching the plasma membrane. Small GTPase Rab and their effectors play a key role in membrane trafficking. Using confocal microscopy, we showed that MICAL-L1 was associated with tubulo-vesicular structures and exhibited a significant colocalization with markers of the Golgi apparatus and recycling endosomes. Super resolution STORM microscopy suggested at the molecular level, a very close association of MICAL-L1 and microdomains in the Golgi cisternae. Using a synchronized secretion assay, we report that the shRNA-mediated depletion of MICAL-L1 impaired the delivery of a subset of cargo proteins to the cell surface. The process of membrane tubulation was monitored in vitro, and we observe that recombinant MICAL-L1-RBD domain may contribute to promote PACSINs-mediated membrane tubulation. Interestingly, two hydrophobic residues at the C-terminus of MICAL-L1 appeared to be important for phosphatidic acid binding, and for association with membrane tubules. Our results reveal a new role for MICAL-L1 in cargo delivery to the plasma membrane.


2019 ◽  
Vol 6 (04) ◽  
Author(s):  
JESHIMA KHAN YASIN ◽  
ANIL KUMAR SINGH

Cytoplasmic streaming is one among the vital activities of the living cells. In plants cytolplasmic streaming could clearly be seen in hypocotyls of growing seedlings. To observe cytoplsmic streaming and its correlated intracellular trafficking an investigation was conducted in legumes in comparison with GFP-AtRab75 and 35S::GFP:δTIP tonoplast fusion protein expressing arabidopsis lines. These seedlings were observed under confocal microscopy with different buffer incubation treatments and under different stress conditions. GFP expressing 35S::GFP:δTIP tonoplast lines were looking similar to the control lines and differ under stress conditions. Movement of cytoplasmic invaginations within the tonoplast and cytoplasmic sub vesicle or bulb budding during cytoplasmic streaming was observed in hypocotyls of At-GFP tonoplast plants. We found the cytoplasmic bulbs/ vesicles or sub vesicle formation from the plasma membrane. The streaming speed also depends on the incubation medium in which the specimen was incubated, indicating that the external stimuli as well as internal stimuli can alter the speed of streaming


Sign in / Sign up

Export Citation Format

Share Document